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Введение 

Актуальность темы и степень ее разработанности. 

За последние десятилетия было разработано большое количество способов 

обработки материалов, каждый из которых служит для достижения определенных 

целей: обеспечение большей жесткости, улучшение прочностных характеристик 

изделия, увеличение сопротивляемости внешним и внутренним кратковременным, 

длительным и циклическим нагрузкам, в том числе при повышенных или понижен-

ных температурах (например, при эксплуатации в районах вечной мерзлоты или в 

составе ракетных двигательных установок). В связи с этим дополнительно разра-

батываются подходы и методы проведения моделирования поведения материалов 

при различных вариантах нагружения, которым посвящены работы Ю. Н. Работ-

нова, А. А. Ильюшина, Д. Д. Ивлева, Г. И. Быковцева, А. Н. Спорыхина, 

Ю. Н. Шевченко, Г. Паркуса, Б. Боли [1–9]. 

С другой стороны, во всех отраслях отечественной промышленности подав-

ляющее большинство инженерных расчетов и вычислительных эксперимен-

тов [10, 11] ведутся в предположении о линейно-упругом поведении используемых 

материалов. Это приводит к нецелесообразному расходу ресурсов при изготовле-

нии изделий вследствие завышенных требований в их прочности. Зарубежная нор-

мативная документация [12, 13] в свою очередь допускает возможность существо-

вания необратимых деформаций и регламентирует требования к допускаемому 

формоизменению конструкции. Данный аспект позволяет более корректно модели-

ровать процессы, происходящие в изделиях, работающих в условиях сложных 

нагружений, и, как следствие, уменьшать экономические издержки производства. 

Таким образом, исследование моделей сред, содержащих все большее число рео-

логических свойств, позволяет получить более точную оценку возможности при-

менения отдельных допущений при проведении аналитических инженерных расче-

тов и вычислительных экспериментов. 
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Широкое распространение в рассматриваемом направлении получили моди-

фикации задачи о горячей посадке и деформировании при вращении цилиндриче-

ских изделий, изготовленных из материалов с различными реологическими свой-

ствами (например, в работах А. А. Буренина, В. П. Радченко, А. В. Ткачевой, 

О. Н. Любимовой, М. А. Барботько, А. Н. Прокудина, И. К. Андрианова, U. Gamer, 

Z. Xue, B. Guan, F. Vivio, L. Vullo [14-31]), задачи моделирования процессов дефор-

мирования и разрушения горных пород, которые освещали А. Н. Спорыхин, 

Б. Д. Аннин, С. Н. Скоробейников, С. В. Лавриков, О. А. Микенина, Thorsten W. 

Becker [32–40], а также задачи возникновения необратимых деформаций в теле под 

действием различных комбинаций силовых и температурных нагрузок, что нашло 

отражение в статьях Е. В. Мурашкина, М. А. Артемова, Е. П. Даца, Д. М. Шиш-

кина, М. П. Галанина, P. Oppermann, R. N. Haward,Y. H. Song, K. F. Zhang [41–49]. 

В перечисленных выше работах рассматриваются как материалы, характеризую-

щиеся только одним механизмом деформирования (например, идеально-упругие и 

идеально-пластические), так и материалы со сложной реологической структурой, 

сочетающей сразу несколько таких механизмов (например, модели Кельвина-

Фойгта, Максвелла, Ивлева–Спорыхина, Пойнтинга-Томпсона и др.). Согласно [5], 

введение в рассмотрение параметра вязкости наделяет модель сплошной среды 

свойствами внутренней неконсервативности, что в свою очередь приводит к воз-

никновению дополнительных вычислительных сложностей в процессе решения 

рассматриваемой задачи. 

Кроме того, известно, что механические свойства сплошной среды могут су-

щественно изменяться при повышении или понижении температуры. Данный факт 

нашел применение в ряде технологических операций обработки материалов в про-

цессе изготовления заготовок или конечных изделий и послужил основой для воз-

никновения математического аппарата инженерных расчетов, позволяющих опре-

делить параметры той или иной операции для достижения требуемого результата и 

оценить влияние отклонения каждого из них. 

При проведении исследований моделей материалов классическими стали за-

дачи [50–81], постановка которых осуществляется для полуограниченных 
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пространств, в условиях плосконапряженного или плоскодеформированного состо-

яния, или в условиях с осевой или сферической симметрией. Так в диссертацион-

ной работе Е. П. Даца [82] проводится рассмотрение упругопластических сплош-

ного и полых шаров с условием пластичности Мизеса, а диссертация Е. Е. Абаш-

кина [83] посвящена изучению напряженно-деформированного состояния пла-

стины, изготовленной из упрочняющегося упруговязкопластического материала и 

подверженной высокотемпературному воздействию. 

Цели и задачи. 

В данной работе объектом исследования являются сферические деформиру-

емые твердые тела в условиях нестационарного температурного воздействия со 

стороны окружающей среды. Предметом исследования является влияние различ-

ных комбинаций реологических свойств материала, включая упрочнение и вяз-

кость, и видов зависимости предела текучести от температуры на напряженно-де-

формированное состояние рассматриваемого тела. 

Основной целью настоящей диссертационной работы является развитие ма-

тематического аппарата теории температурных напряжений для упрочняющихся 

упруговязкопластических сред. Для достижения указанной цели были решены сле-

дующие задачи: 

− постановка и решение краевых задач о нестационарном изменении темпе-

ратуры сплошного и полого шаров; 

− разработка подхода к получению аналитических выражений температур-

ных напряжений и перемещений в телах, изготовленных из упрочняющихся упру-

говязкопластических материалов, а также определению положения упругопласти-

ческих границ, разделяющих области с различающимися реологическими свой-

ствами, и самого эволюционного процесса развития зон обратимого и необрати-

мого деформирования. 

− верификация полученных аналитических зависимостей посредством про-

ведения вычислительного эксперимента с применением систем конечно-элемент-

ного анализа. 

Научная новизна работы заключается в том, что впервые: 
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− получены аналитические решения краевых задач теплопроводности в 

сплошном и полом шарах с заданной скоростью изменения температуры их внеш-

ней поверхности; 

− определены выражения, описывающие температурные напряжения с уче-

том упрочняющегося и вязкого механизмов деформирования при линейной и по-

линомиальной зависимости предела текучести от температуры, а также совершены 

предельные переходы к упрощенным моделям среды; 

− сформулирован подход к определению последовательности развития обла-

стей с различающимися реологическими свойствами и нахождению положения 

упругопластических границ между ними; 

− представлены результаты верификации полученных результатов путем 

проведения вычислительного эксперимента, подтверждающие корректность рас-

сматриваемых аналитических выражений, определяющих напряженно-деформиро-

ванное состояние тел 

− доказана сходимость применяемых в работе функциональных рядов и дана 

оценка достаточного количества их членов, необходимых для выполнения расчетов 

с заданной точностью. 

Теоретическая и практическая значимость работы. 

Теоретическая значимость заключается в развитии методов аналитического 

решения сопряженных задач теплопроводности и механики деформируемого твер-

дого тела для сред со сложной реологией. 

Практическая ценность работы состоит в возможности применения получен-

ных результатов для дальнейшей модификации инженерных расчетов напряженно-

деформированного состояния конструкций, работающих в условиях нестационар-

ного нагрева, а также для оптимизации технологических процессов, таких как тер-

мообработка и горячее формование. Кроме того, рассматриваемые задачи могут 

быть использованы при проведении верификационных тестов вновь разрабатывае-

мых расчетных пакетов и систем, в том числе, в основе которых лежит метод ко-

нечных элементов. 

Методология и методы исследования. 
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В основе определения аналитических выражений для распределения темпе-

ратурного поля, а также напряжений и перемещений в телах лежит метод Фурье 

разделения переменных с последующей оценкой сходимости и величины остаточ-

ных членов функциональных рядов, полученных с его помощью, для обеспечения 

требуемой точности вычисляемых значений. Численное моделирование прово-

дится с применением метода конечных элементов. 

Положения, выносимые на защиту: 

1. Аналитические решения краевых задач теплопроводности и термомеха-

ники для сплошного и полого шаров из упрочняющегося упруговязкопластиче-

ского материала с линейным и полиномиальным видом зависимости предела теку-

чести от температуры. 

2. Сформулированный метод определения положения упругопластических 

границ и эволюции зон обратимого и необратимого деформирования в условиях 

нестационарного температурного воздействия. 

3. Результаты проведенной верификации полученных соотношений. 

4. Оценка сходимости используемых в модели функциональных рядов и 

точности полученных решений. 

Степень достоверности и апробация результатов. 

Теоретическая часть исследования строится на адекватно описывающей по-

ведение упрочняющихся упруговязкопластических материалов модели Ивлева–

Спорыхина. Применение соответствующего математического аппарата осуществ-

ляется с соблюдением строгости всех выкладок и преобразований. Кроме того, по-

лучаемые при совершении предельных переходов к упрощенным реологическим 

моделям результаты качественно совпадают с результатами и выводами, установ-

ленными другими авторами, а полученные аналитические результаты согласуются 

с результатами вычислительного эксперимента. 

Полученные в процессе работы над диссертацией результаты были представ-

лены на межвузовской научной конференций молодых ученых и студентов «Мате-

матика, информационные технологии, приложения» (Воронеж, 2021), всероссий-

ской VI Дальневосточной конференции с международным участием 
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«Фундаментальные и прикладные задачи механики деформируемого твердого тела 

и прогрессивные технологии в металлургии и машиностроении» (Комсомольск-на-

Амуре, 2022) и международной научной конференции «Актуальные проблемы при-

кладной математики, информатики и механики» (Воронеж, 2023). Материалы дис-

сертации опубликованы в 8 печатных работах, из которых 2 статьи в рецензируе-

мых изданиях перечня ВАК [84–85], 2 – в изданиях, индексируемых в международ-

ных базах данных [86–87], и 4 публикации в сборниках трудов конферен-

ций [88-91]. 

Диссертационная работа включает в себя введение, 3 главы основного текста, 

заключение и список литературы из 103 наименований. Работа изложена на 122 

страницах, содержит 30 рисунков и 5 таблиц. 
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Глава 1 Соотношения теории температурных напряжений в упрочняющихся 

упруговязкопластических телах 

1.1 Общий вид замкнутой системы уравнений в теории температурных 

напряжений 

Рассмотрим в общем виде напряженно-деформированное состояние тела  , 

подверженного температурному воздействию. 

Уравнение теплопроводности в случае отсутствия тепловых источников 

имеет вид [92] 

 
T

T
t


= 


, (1.1) 

где  1, , nx x= x   – радиус-вектор точки тела в выбранной системе координат; 

 t  – время; 

 ( ),T T t= x  – поле температуры; 

   – коэффициент температуропроводности; 

   – оператор Лапласа. 

В начальный момент времени 0t t=  распределение температуры в теле опре-

деляется соотношением вида 

 ( ) ( )0 0,T t T=x x , (1.2) 

где ( )0T x  – функция пространственных координат. 

В общем случае граничные условия для задачи теплопроводности описыва-

ются уравнением 

 ( )1 2 , ,
T

T t
n


 +  =  


x x , (1.3) 

где 1  и 2  – коэффициенты (
2 2

1 2 0 +  ); 

 n


 – вектор нормали к поверхности тела  ; 
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 ( ),t x  – непрерывная функция, определяющая изменение температуры на по-

верхности  . 

Таким образом, уравнение (1.1) вместе с начальными (1.2) и гранич-

ными (1.3) условиями представляют собой краевую задачу Коши. Ее решение не 

зависит от напряженно-деформированного состояния тела и позволяет определить 

распределение поля температуры. 

В общем случае уравнения движения записываются в форме [93] 

 
2

, 2

i
ij j i

u
F

t


 + = 


, (1.4) 

где ij  – компоненты тензора напряжений; 

   – плотность среды, принимаемая в рамках теории малых деформаций посто-

янной; 

 iF  – компоненты вектора плотности распределения массовых сил, действую-

щих на тело; 

 iu  – компоненты вектора перемещений. 

Рассмотрим случай, когда скорости деформаций, возникающие вследствие 

существования в теле температурного градиента, малыми, что позволяет прене-

бречь инерционным слагаемым. Кроме того, в дальнейшем будем пренебрегать 

массовыми силами. Тогда уравнение равновесия (1.4) примет вид 

 , 0ij j = . (1.5) 

В рамках конечных деформаций компоненты тензора полных деформаций 

определяются через компоненты вектора перемещений по следующим формулам 

 
, , , , , , , ,

1 1

2 2
ij i j j i k i k j i j j i k i k je u u u u u u u u

      
= + + = + −   

   



, (1.6) 

где ije  – компоненты тензора полных деформаций; 

  и  – символы, обозначающие связь компонент вектора перемещений с 

начальной и конечной метрикой пространства соответственно. 

В дальнейшем будем рассматривать бесконечно малые относительные пере-

мещения. В этом случае, третье слагаемое для обеих форм в (1.6) является 
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величиной более высокого порядка малости по сравнению с остальными слагае-

мыми. После их отбрасывания выражения для компонент тензора полных дефор-

маций в начальной и конечной метрике пространства принимают одинаковый вид 

и приводят к соотношениям Коши: 

 ( ), ,

1

2
ij i j j ie u u= + . (1.7) 

Полные деформации, возникающие в теле, могут быть представлены как 

сумма обратимых e

ije  (упругих) и необратимых p

ije  (пластических). Упругие дефор-

мации связаны с компонентами тензора напряжений соотношением Дюамеля–Ней-

мана, являющимся обобщением классического закона упругости Гука на случай 

термодеформирования: 

 ( )( )02 3 2e e

kk ij ij ijij e e T T +  += −   −  , (1.8) 

где ,   – параметры Ламе; 

   – коэффициент температурного расширения; 

 0T  – начальная температура в теле; 

 ij  – символ Кронекера. 

В области необратимого деформирования должно выполняться условие пла-

стичности, в общем случае имеющее вид 

 ( ) ( )0 1,p ijf p n = =  (1.9) 

и описывающее в пространстве компонент тензора напряжений поверхность теку-

чести. При выполнении условия пластичности вектор в пространстве, определяе-

мом компонентами тензора напряжений, перемещается по данной поверхности 

вплоть до момента начала процесса разгрузки материала. 

Согласно принципу максимума скорости диссипации механической энергии, 

скорость диссипации механической энергии в единице объема во время пластиче-

ского деформирования для действительного напряженного состояния имеет макси-

мальное значение среди всех напряженных состояний, допускаемых рассматрива-

емым условием пластичности. Тогда условие пластичности (1.9) является 
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пластическим потенциалом, из чего следует ассоциированный закон пластического 

течения 

 
pp

ij p

ij

f
de d


= 


, (1.10) 

где 0d   – некоторый скалярный множитель. 

В качестве условия пластичности могут быть рассмотрены следующие выра-

жения: 

− условие максимального приведенного напряжения (условие Треска): 

 max 2i j k −  = , (1.11) 

где k  – предел текучести материала; 

 i  – главные компоненты тензора напряжений; 

− условие максимального приведенного касательного напряжения (условие 

Ишлинского–Ивлева): 

 
4

max
3

i k − = , (1.12) 

где ( )1 2 3 3 =  +  +  ; 

− условие максимального октаэдрического напряжения (условие Мизеса): 

 
28

3
ij jiS S k= , (1.13) 

где ( )3ij ij kk ijS =  −    – девиатор тензора напряжений. 

− прочие формы условия пластичности (в том числе, кусочные). 

В [5–7] была предложена модификация Ивлева–Спорыхина условия пластич-

ности Мизеса, учитывающая упрочнение и вязкость материала, которая будет ис-

пользоваться в дальнейшем: 

 ( )( ) 28

3

p p p p

ij ij ij ji ji jiS ce e S ce e k− −  − −  = , (1.14) 

где c  – коэффициент упрочнения; 

  – коэффициент вязкости. 



13 

 

Следствием ассоциированного закона пластического течения (1.10) является 

пластическая несжимаемость материала, которой соответствует выражение 

 0p

kkde = . (1.15) 

Аналогично [82] предположим, что p p p

ij ij ijde e e= −


, где p

ije


 – пластические де-

формации в предыдущий момент времени. Пусть, кроме того, начальный момент 

времени был выбран таким образом, что 0p

ije =


. Тогда (1.15) примет вид 

 0kk

pe = . (1.16) 

Граничные условия на поверхности тела могут быть заданы как в напряже-

ниях 

 ij j in P = , (1.17) 

где jn  – компоненты вектора нормали к поверхности; 

 iP  – компоненты поверхностных сил, 

так и в перемещениях 

 
*

i iu u= , (1.18) 

где 
*

iu  – компоненты перемещений на поверхности. 

Кроме того, в случае существования в теле сразу двух или более зон, отлича-

ющихся друг от друга реологическими свойствами, на границах между ними не 

должно нарушаться условие сплошности среды, т. е. должны выполняться условия 

сопряжения 

 
  0,

0,

k

k

i

ij j

u

n





=

  = 

 (1.19) 

где  iu и ij jn    – величины разрыва перемещений и напряжений соответственно 

в двух соседних зонах; 

 k – граница между двумя зонами. 

Таким образом, система уравнений (1.5), (1.7), (1.8), (1.10), (1.14), (1.16) вме-

сте с граничными условиями (1.17), (1.18), условиями сопряжения (1.19) и извест-

ным распределением температурного поля в теле представляет собой замкнутую 
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систему уравнений для определения напряженно-деформированного состояния 

тела. Дополненная уравнениями (1.1)–(1.3), данная система полностью описывает 

поведение твердого тела при его термодеформировании. 

1.2 Соотношения теории температурных напряжений для 

упруговязкопластического упрочняющегося материала в условиях 

сферической симметрии 

В рамках сферической системы координат приведенные выше соотношения 

можно существенно упростить, если имеет место сферическая симметрия. Вслед-

ствие этого все величины в азимутальном ( ) и полярном ( ) направлениях ока-

зываются идентичными. Кроме того, частные производные любой функции по уг-

ловым переменным   и  , как и все компоненты вектора перемещений, кроме ра-

диальной, тождественно обращаются в нуль: ( ),0,0ru u= . 

Уравнение теплопроводности (1.1), начальные (1.2) и граничные (1.3) усло-

вия для случая сферической симметрии запишутся в виде 

 
( ) ( ) ( )2

2

, , ,2T r t T r t T r t

t r r r

   
=  + 

   

, (1.20) 

 ( ) ( )0 0,T r t T r= , (1.21) 

 ( )1 2 , ,
T

T r t r
r


 +  =  


. (1.22) 

В соответствии с рассматриваемыми допущениями (1.5) примет вид 

 ( )
2

0r
r

r r



+  −  =


. (1.23) 

Соотношения Коши (1.7) в условиях сферической симметрии имеют форму 

 

, ,

,

0.

r r r

r

r r

e u

u
e e

r

e e e

 

  

=

= =

= = =

 (1.24) 
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Выражению (1.8) эквивалентна система уравнений 

 

( ) ( )( )

( ) ( )( )

0

0

2

0.

2 2 3 ,

2 2 3 2 ,

e e e

r r

e e e

r

r

r r

e e e T T

e e e T T



  

  

  + +  −   +

+

=

 =  =

 = 



=





 −

+  − −

=

 +  (1.25) 

Для рассматриваемой модели условие пластичности (1.14) приводится к 

уравнению 

 ( ) ( )
2 2

28
2

3

p p p p

r r rS c e S ke ce e  − − − −+ = , (1.26) 

а ассоциированный закон пластического течения (1.10) запишется в форме 

 
( ) ( )( )

( ) ( )( )

4
,

3

.
2

3

p

r r

p

p p p p

r r

p p p p p

r rr

de d

d

c e e e e

d c e e ee d ee

 

   





=   − 

= −  

− − −  −

= − − −  −− 





 (1.27) 

Как указывалось выше, из (1.27) следует пластическая несжимаемость мате-

риала: 

 02r

p pe e+ = . (1.28) 

Стоит заметить, что из (1.26) можно получить модификации для остальных 

форм классических условий пластичности. Проведем ряд преобразований: 

 

( ) ( )

( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( )

2 2

22

2 2

2
2

2

2
6 9

3

2 2
3

3 3

2 8
.

3 3

p p p p

r r r

p p p p

r r

p p p p p p

r r

p p

r

p p

r

r r

r

ce e ce e

ce e c

S

e e

ce e ce e c

c

S

e e

e e c ke e

  

   

  









 

 

 + =

=  −  +  −  + + + =

=  −  + + =  −  + + − + =

=  − − − 

− − − − 

 

  

 − − =









 

Таким образом, после приведения выражения к окончательному виду может 

быть получена модификация условия пластичности Треска (1.11): 

 ( ) ( ) 2r

p p p

r

p

r ce e ce e k   − − −  − − = . (1.29) 

Выполним преобразования выражения (1.29) таким образом, чтобы в левой 

части выражения остался индекс, связанный только с одной из координат: 
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( ) ( )

( ) ( ) ( )

( ) ( )

1
3 2

2

3 4
2 ,

2 3

p p p p

r

p p p p p p

r

p

r r

r r r r

r r r r

r

p p p

r r

ce e ce e

ce e ce e ce

k

e

ce e ce e k

 

 





 − − −  − − =

=  − − −  − − −  − − =

=  − − −  =



 



  

 − − −  =







 (1.30) 

 

( ) ( )

( ) ( ) ( )

( ) ( )

3 2

2
3 2 .

3

p p p p

r

p p p p p

r r

p

r

p p

r

p p

r

ce e ce e

ce e ce e ce e

ce e ck e ke

 

   

   











 − − −  − − =

=  − − −  − − −  − −

=

 

  =

=  − − −  



  − − − = 







 (1.31) 

Выбирая из (1.30) и (1.31) уравнение с наибольшей правой частью, получим 

модификацию условия максимального приведенного касательного напряже-

ния (1.12): 

 ( )
4

3
r

p p

rr ce ke − − − = . (1.32) 

Таким образом, выше было показано, что условия пластичности (1.26), (1.29) 

и (1.32), являющиеся модификациями классический условий пластичности (1.11), 

(1.12) и (1.13) соответственно и учитывающие механизмы вязкого деформирования 

и упрочнения, в условиях сферической симметрии эквивалентны друг другу. Для 

удобства вычислений далее будем проводить рассмотрение модифицированного 

условия Треска (1.29). 

Условия сопряжения (1.19) моделей сред, различающихся реологическими 

свойствами, на упругопластических границах запишутся в виде 

     0
k k k

r ru   
 =  =  =  . (1.33) 

Граничные условия в напряжениях (1.17) приводят к соотношению 

 r P = , (1.34) 

а в перемещениях (1.18) – к уравнению 

 
*

r ru u= . (1.35) 
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Таким образом, замкнутая система уравнений теории температурных напря-

жений, описанная в разделе 1.1, преобразуется к системе (1.20), (1.23)–(1.25), 

(1.27)–(1.29) c начальными (1.21) и граничными (1.22), (1.34)–(1.35) условиями, а 

также условиями сопряжения на упругопластических границах (1.33). 

1.3 Выводы по главе 1 

В данной главе были рассмотрены основные соотношения теории темпера-

турных напряжений, записанные в произвольной системе координат, а также в слу-

чае выполнения условия сферической симметрии. 

В ходе проведения исследований была получена замкнутая система уравне-

ний теории температурных напряжений. Кроме того, были рассмотрены модифи-

цированные формы записи классических условий пластичности с учетом вязкого и 

упрочняющегося механизмов деформирования и показана их эквивалентность друг 

другу для случая сферической симметрии. 
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Глава 2 Термодеформирование упрочняющихся упруговязкопластических 

сплошного шара при нестационарном температурном воздействии  

Рассмотрим сплошной шар радиуса R . В начальный момент времени темпе-

ратура в теле постоянна и равна 0T . Поверхность шара нагревается со скоростью x  

до температуры mT , причем справедливо выражение 

 
( ) 0

0

,
1 e xt

m

T R t T

T T

−
−

= −
−

. (2.1) 

Требуется определить напряженно-деформированное состояние тела при 

температурном воздействии и отсутствии массовых и поверхностных сил. Анало-

гичная постановка задачи приводилась в [82] для упругопластической модели ма-

териала. 

2.1 Решение задачи теплопроводности 

Для поставленной задачи система уравнений, содержащая уравнение тепло-

проводности (1.20), начальное условие (1.21) и граничные условия (1.22) в центре 

шара и на его поверхности, принимает вид 

 

( ) ( ) ( )

( )

( )

2

2

0

0

0

0

, , ,2
,

,0

,
1 e

.

,

,

0

xt

m

r

T r t T r t T r t

t r r r

T r

T R t T

T

T

T

T

r

−

=

   
=   + 

   

=

−
= −

−


=



 (2.2) 

Система уравнений (2.2) представляет собой замкнутую систему уравнений 

задачи теплопроводности относительно функции ( ),T r t . 

Преобразуем уравнение теплопроводности (1.20) к виду 
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 ( )
,rr

rT rT=    

и введем замену 

 ( )
( )

0

,
, m

m

T r t T
r t r

T T

−
 =

−
. (2.3) 

Тогда уравнение теплопроводности, а также начальные и граничные условия 

относительно функции ( ),r t  запишутся в форме 

 
( )

( )

( )

,

.

,0

0, 0

e

,

,

,

, x

r

t

r

r r

t

R t R −

 = 

 =

 =

 =



 (2.4) 

Представим неизвестную функцию ( ),r t  в виде суммы функций ( ),U r t  и 

( ),V r t , причем ( ),U r t  должна удовлетворять только начальным и граничным усло-

виям. Тогда для функции ( ),V r t  после ее выражения и подстановки в (2.4) будет 

справедлива система 

 ( ) ( )

( ) ( )

, , ,

,0 ,0 ,

0, , 0.

rr rrV U U

V r r U r

V t V t

V

R

 =  − −  

= −

= =



 (2.5) 

Пусть функция ( ),U r t  определяется соотношением 

 ( ) e, xtU r t r −= .  

Тогда система (2.5) примет вид 

 ( )

( ) ( )

, e ,

,0 0,

0, , 0.

xt

rrV

V r

t

V

t

xr

V V R

−= 

=

= =

+

 (2.6) 

Следуя [92], запишем решение задачи (2.6), представляющей собой неодно-

родное дифференциальное уравнение в частных производных с однородными 

начальным и граничным условиями: 
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 ( ) ( )

2 2

21

2 2
1

2

sin

, 2 1 e e

n
tn xtR

n

n
r

xR
V r t

n n
x

R R

+ − + −

=

 
   
 = −  
 

−
  − 

 . (2.7) 

Возвращаясь к замене (2.3), приведем окончательное решение задачи тепло-

проводности в сплошном шаре в безразмерном виде 

 ( )
( )

( )
( )

2 2

20

2 2
10

2

, sin
, 1 2 1 e e ,

n
tnxt xtR

nm

T t T n x
t e

nT T n
x

R

+ − 
− −

=

  −  
  = = − + −  

−     −

−


  (2.8) 

где ( ),t   – безразмерная температура; 

 r R =  – безразмерная координата. 

По полученным аналитическим зависимостям было построено распределе-

ние поля безразмерной температуры в теле в различных сечениях по времени, пред-

ставленное на рисунке 1. Можно видеть, что областью с наибольшим температур-

ным градиентом является поверхность шара, а также наблюдается постепенное 

уменьшение температурного градиента с течением времени вплоть до его полного 

исчезновения и установления во всем теле постоянной температуры. 

 

Рисунок 1 – Распределение поля безразмерной температуры 
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Аналогичный вывод о расположении в теле области с наибольшим темпера-

турным градиентом можно сделать, непосредственно проанализировав соотноше-

ние для безразмерной температуры (2.8). 

Можно показать, что для случая мгновенного нагрева поверхности шара, т. е. 

при бесконечно большой скорости ее нагрева x → , решение (2.8) принимает вид, 

совпадающий с приведенным в [94, с. 105–107]: 

 ( ) ( )
( )

2 2

2

1

sin
, 1 2 1 e

n
tnx R

n

n
t

n

 − 
→+

=

 
  ⎯⎯⎯→ + −

 
   

Распределение поля безразмерной температуры для случая мгновенного 

нагрева шара в те же моменты времени, что и для случая нагрева шара с конечной 

скоростью, приведено на рисунке 2. 

 

Рисунок 2 – Распределение поля безразмерной температуры при мгновенном 

нагреве поверхности 

Очевидно, что при уменьшении скорости нагрева поверхности уменьшается 

скорость нагрева всего тела в целом, а для предельного случая 0x =  изменения 

температуры не происходит. 
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2.2 Решение задачи механики деформируемого твердого тела 

В разделе 1.2 были приведены основные соотношения теории температурных 

напряжений для упруговязкопластического упрочняющегося материала в условиях 

сферической симметрии. Предположим, что предел текучести материала, из кото-

рого изготовлен рассматриваемый сплошной шар, имеет линейную зависимость от 

температуры: 

 ( ) ( )( )0, 1 ,k r t k r t= −  , (2.9) 

где 0k – предел текучести материала при температуре 0T ; 

   – коэффициент пропорциональности; 

 ( ) ( )( )0, ,r t T r t T =  − . 

Очевидно, что 

 ( ), ,m

r
r t t

R

 
 =   

 
, (2.10) 

где ( )0m mT T =  − . 

Как указывалось ранее, введение в реологическую модель вязкостной состав-

ляющей приводит к возникновению частной производной по времени и, как след-

ствие, возрастанию вычислительной сложности. Поэтому необходимо использо-

вать неклассические подходы к решению данной задачи. 

Исходя из того, что выражение для безразмерного поля температуры имеет 

вид (2.8), и температурный член в определяющих соотношениях имеет порядок не 

выше первого, отыскание неизвестных величин далее будет проводиться в предпо-

ложении, что все они могут быть записаны в форме 

 ( )   ( )  ,
2

1 0

,
, e

n j

j n

h n j t
F r rt F

+
−

= =

= , (2.11) 

где ( ),F r t  – рассматриваемая величина; 

  ,n j – индекс члена ряда по координате и времени соответственно; 

 
  ( ),n j

F r – функции, подлежащие определению; 
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 ,n j

h  – коэффициенты, определяемые соотношением 

 
 

2 2

, 2
при 1,

при 2.

n j

n
j

h R

x j


 =

= 
 =

  

Введем в рассмотрение функцию ( ), 1r t = . Очевидно, что для членов ее раз-

ложения (2.11) будет справедливо определение 

  , 1 при 0 и 1,

0 при 0 или 1.

n j n j

n j

= =
 = 

 
 (2.12) 

Выражение для предела текучести (2.9) с учетом (2.11) и (2.12) примет вид 

 ( )     ( )( )  ,
2

1 0

, ,

0, e
n j h

j n

n j n j t
k r t k r

+
−



= =

=  −  . (2.13) 

Нетрудно заметить, что уравнения (1.23)–(1.25), (1.27)–(1.29), граничные 

условия (1.34)–(1.35), а также условия сопряжения на упругопластических грани-

цах (1.33) после проведения разложения (2.11) могут быть приведены к форме 

 
  ( )  

2
, ,

1 0

0e
n

n j h n j t

j

G r
+

= =

−
= . (2.14) 

Вследствие того, что уравнения теории температурных напряжений выпол-

няются в каждой точке тела 0 r R   на протяжении всего процесса 0t  , то в силу 

их произвольности из равенства нулю функциональных рядов (2.14) следует равен-

ство нулю всех их членов 

   ( )  , ,
0e

n j h n j t
G r

−
= . (2.15) 

Поскольку экспонента величины 
 ,n j

h t , каждый из множителей которой есть 

действительное число, всегда принимает положительные значения и равна нулю 

только при t →+, то из (2.15) следует, что 

   ( ),
0

n j
G r = .  

Приведенные выше рассуждения приводят к следующей системе уравнений 

относительно членов разложения неизвестных величин (здесь и далее для удобства 

изложения будут опущены индексы  ,n j ): 
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 ( )
2

0r
r

r r



+  −  =


, (2.16) 

 ( )( ) ( )( ) ( )2p p

r rc h e c h e k r  − − −  − − = , (2.17) 

 2 0p p

re e+ = , (2.18) 

 

, ,

,

e p

r r r r r

e p e p r

e e e u

u
e e e e e e

r
     

+ = =

+ = + = = =
 (2.19) 

 
( ) ( ) ( )

( ) ( ) ( )

2 2 3 2 ,

2 2 3 2 .

e e e

r r r

e e e

r

e e e r

e e e r



   

 =  + +  −  +  

  =  + +  −   = +
 (2.20) 

Граничными условиями, как следует из постановки задачи, являются отсут-

ствие внешних нагрузок на поверхности шара и перемещений в его центре: 

 

0

0,

0.

r r R

r r
u

=

=

 =

=
 (2.21) 

Полученная система уравнений (2.16)–(2.21) в каждый отдельный момент 

времени может рассматриваться как система, определяющая стационарную задачу 

о деформировании упрочняющегося упругопластического материала с коэффици-

ентом упрочнения c h− . 

Пусть в начальный момент времени в теле полностью отсутствуют необрати-

мые деформации, т. е. деформирование происходит в рамках теории упругих де-

формаций. Тогда из соотношений Коши (2.19) следует, что 

 ( )
,

e e

r r
e re=  (2.22) 

После подстановки выражения радиальной компоненты деформаций (2.22) в 

закон Дюамеля–Неймана (2.20) последнее с учетом уравнения равновесия (2.16) за-

пишется в форме 

 ( ), , ,,
3 4 0r r r r rr

r +  +  = . (2.23) 

Уравнение (2.23) представляет собой неоднородное дифференциальное урав-

нение. Его непосредственное интегрирование приводит к выражению для 
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радиальной компоненты тензора напряжений, обратная подстановка которой в 

уравнение равновесия (2.16) позволяет определить окружную компоненту напря-

жений: 

 

( )

( ) ( )

2

3 3

0

2

3 3

0

4
d ,

2
d 2 ,

2

r

e

r

r

e

e
e

e
e

B
A

r r

B
r A

r r


 
 = −     + + 

 

 
 =     −  + − 

 





 (2.24) 

где 
( )3 2

2

  + 
 =

 + 
. 

Следствием соотношений Коши (2.19) является связь перемещений с окруж-

ной компонентой деформаций: 

 ru re= . (2.25) 

Подстановка выражений напряжений (2.24) в закон Дюамеля–Неймана (2.20) 

и уравнение (2.25) приводит к выражению для радиальной компоненты вектора пе-

ремещений: 

 ( )2

2 2

0

d
3 2 4

r

e

r
e erA B

u
r r

 
=    + − 

  +   
 . (2.26) 

Для определения неизвестных постоянных следует воспользоваться гранич-

ными условиями на поверхности и в центре шара (2.21): 

 
( )2

3

0

4
d ,  

0.

R

e

e

A
R

B


=    

=


  

Пусть нагрев шара происходит таким образом, что в некоторый момент вре-

мени pt t=  на его поверхности начинает выполняться условие пластичности (2.17) 

с положительным подмодульным выражением: 

 ( )( ) ( )( ) ( )2p p

r rc h e c h e k r  − −  −  − −  = . (2.27) 

Тогда дальнейшее деформирование происходит в двух одновременно суще-

ствующих областях: областью ( )0 r a t   обратимого деформирования и 
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областью ( )a t r R   – необратимого. Здесь и далее будем обозначать ( )a t  поло-

жение упругопластической границы, разделяющей указанные выше зоны. 

Исключая из соотношений Коши (2.19) перемещения, можно получить связь 

упругих и пластических деформаций в теле: 

 ( )
,

e p e p

r r
r

e e r e e 
 + = +
  . (2.28) 

Подстановка закона Дюамеля–Неймана (2.20) в соотношение (2.28) с учетом 

уравнения равновесия (2.16) приводит к уравнению 

 ( ), , , ,,

3
3 2 2 0

p
p r

r r r r r r rr

e
r e

r

 
 +  +   − − = 

 
. (2.29) 

Решая его и полагая распределение пластических деформаций известным, 

получим выражение радиальной компоненты напряжений через необратимые де-

формации: 

 
( )

( )2

3 3

, 4
d d2

pr r

r p

pr

a a

Be t
A

r r

 
  −    +=  +

  . (2.30) 

Используя уравнение равновесия (2.16) и условие пластической несжимаемо-

сти (2.18), приведем условие пластичности (2.27) к виду 

 ( ) ( ), 3 2p

r r rr c h e k r + −  =  (2.31) 

Подстановкой уравнения связи компонент напряжений и деформаций (2.30) 

в соотношение (2.31) получим линейное алгебраическое уравнение. Решая его, 

определим выражение для радиальной компоненты необратимых деформаций: 

 
( )

( ) ( )
( )

( )
( )

( )
2

3 3

4 4 4 1 1
,

3 3

r
pp

r

a

Bk r
e r d

h h h r h r

 
= − +  −     +

  −   −   −   −  (2.32) 

где 
3 2

3

c + 
 =


. 

При обратной подстановке (2.32) в (2.30) получается окончательное выраже-

ние для компонент напряжений в пластической области: 
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( )

( )

( )
( )

( ) ( )

( )

( )
( ) ( ) ( )

2

3 3

2

3 3

2

3 3

2

3 3

4
, d

2 4
4 d d ,

3

2
d 2

2

2 2
4 d 2 d 2 .

3 2

p

p

a

p

a a

p

p

a

r

p

r

r r

r

p

a

r r
p

a

B
t A

r r

Bk

h r r

B
r A

r r

Bk
k r r

h r r



 
 = −     + + + 

 

  
+ −  +     − 

  −  

 
 =     −  + − + 

 

  
+ −  − −     +  + 

  −  



 



 

 (2.33) 

Из соотношений Коши (2.19) следует, что 

 ( )
,

e p

r
r

u r e e 
 = +
    

или 

 

( )

( )( )

( )
( )

2

2 2

2

2 2

, d
3 2 4

2 4
4 d d .

3 3 2

r
p p

a

p

p

r

r r

a a

rA B
u t

r r

Bk
r

h r r

 
=     + − + 

  +   

  
+ −  +     − 

  −  +   



 

 (2.34) 

Поскольку соотношения, используемые для определения поведения тела в 

зоне упругости, не изменились, то уравнения (2.24) и (2.26) также описывают 

напряжения и перемещения в данной области. Неизвестные интегрирования в вы-

ражениях (2.24), (2.26), (2.33) и (2.34) подлежат определению из граничных усло-

вий и условий сопряжения напряжений и перемещений на упругопластической гра-

нице ( )a t : 



28 

 

 

( )

( )

( )

( )
( ) ( )

( )

( )

( )

( )
( )

( )

0

0 0

0

0

2

3

2
2 2

3 3

2

3

2
2

3

2

0

4
d

8 8
d d d ,

3 3

4
d

8 8
d d

3 3

0, 4 d .

1 1

1
,

R

e

R R a

a

R

p

R R

a

a

pe

A

k

h h
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h h
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R a

R

R

B

R


=    

  
+          

  −    −  


=    

  
     

  −    −  
+

= = − 

+

− −

+



−

  



  









  

Для определения положения упругопластической границы ( )a t  можно ис-

пользовать одно из приведенных ниже условий, являющимися эквивалентными и 

выбираемыми исходя из удобства формы их записи: 

− отсутствие на границе пластических деформаций; 

− достижение упругими напряжениями (2.24) уровня, соответствующего 

началу пластического течения и выполнению условия пластичности (2.27); 

− выполнение условия сопряжения окружной компоненты напряжений на 

границе. 

Можно показать, что все три приведенных выше условия сводятся к виду 
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Численное решение уравнения (2.35) в фиксированный момент вре-

мени pt t  позволяет получить положение границы ( )a t . Стоит отметить, по-

скольку положение границы ( )a t  должна определяться однозначно, то вместо ре-

шения уравнений для каждого члена разложения радиальной компоненты пласти-

ческих деформаций, решается полное уравнение (2.35). 
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По мере нагревания шара градиент температуры в нем постепенно уменьша-

ется, что приводит к уменьшению температурных напряжений и, как следствие, за-

медлению необратимого деформирования. Согласно ассоциированному закону, 

уровень накопленных деформаций в теле не может снижаться, т. е. скорость изме-

нения пластических деформаций не может быть отрицательной. 

Рассмотрим момент времени ut t= , который соответствует прекращению 

процесса необратимого деформирования на поверхности шара и выполнению усло-

вия 

 0p

re = . (2.36) 

Таким образом, при ut t  в теле существуют сразу три области: помимо уже 

развитых зон упругого и упруговязкопластического деформирования, разделенных 

границей ( )a t , зарождается область разгрузки материала, отделяемая от пластиче-

ской зоны границей ( )b t . Области разгрузки характерно сохранение в каждой 

точке ( )b t r R   уровня накопленных необратимых деформаций ˆ pe  без его увели-

чения. 

Уравнение (2.29) в зоне разгрузки принимает вид 

 ( ), , , ,,

ˆ3
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p
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r r r r r r rr

e
r e

r

 
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 
, (2.37) 

Поскольку в каждой точке шара известен уровень накопленных деформаций, 

решение уравнения (2.37) сразу приводит к окончательным выражениям для ком-

понент напряжений 
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 (2.38) 

По аналогии с (2.34) для области разгрузки перемещения определяются вы-

ражением 
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В уже существующих областях напряжения и перемещения определяются по 

формулам (2.24), (2.26), (2.33) и (2.34) с точностью до новых постоянных: 
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Координата упругопластической границы ( )b t  в процессе разгрузки опреде-

ляется из условия отсутствия на ней приращения пластических деформаций: 
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 (2.40) 

Далее, необходимо обратиться к вопросу определения уровня накопленных 

деформаций ˆ pe . Поскольку положение границы ( )b t  определяется в каждый мо-

мент времени непрерывной и монотонно убывающей функцией, то существует об-

ратная ей функция ( )s b . Тогда уровень необратимых деформации в точке 
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определяется величиной пластической деформации при прохождении упругопла-

стической границы ( )b t  через эту точку: 

 ( ) ( )( )ˆ ,p p

r re r e r s r=  (2.41) 

Поскольку величина ˆ p

re  определяет уровень накопленных необратимых де-

формаций и, как следствие, не изменяется при дальнейшем процессе деформирова-

ния, то из всех членов ее разложения в функциональный ряд остается единственное 

слагаемое: 
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 (2.42) 

Тогда в уравнениях (2.38) и (2.39) слагаемые, содержащие накопленные де-

формации, присутствуют только для членов рядов с индексами  0,1 . 

В зависимости от уровня необратимых деформаций в теле и скорости его 

нагрева возможно существование момента rt t= , который характеризуется возник-

новением на поверхности шара области повторной пластичности, для которого вы-

полняется условие пластичности (2.17) с отрицательным подмодульным выраже-

нием: 

 ( )( ) ( )( ) ( )2p p

r rc h e c h e k r  − −  −  − −  = − . (2.43) 

Нетрудно видеть, что в новой области ( )c t r R   выражения для напряже-

ний и перемещений совпадают с выражениями (2.33) и (2.34) из первой области 

пластического течения ( ) ( )a t r b t   с точностью до знака перед пределом текуче-

сти и постоянных интегрирования: 
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Выражения констант интегрирования для варианта нагружения, при котором 

на протяжении некоторого времени в теле присутствуют все четыре области дефор-

мирования, имеют вид 
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Положение границы ( )c t  определяется из соображений, аналогичных опре-

делению границы ( )a t , однако вместо условия отсутствия пластических деформа-

ций рассматривается условие равенства новых и накопленный деформаций: 
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 (2.46) 

Поскольку упругопластические границы в теле двигаются с неодинаковыми 

скоростями, то в процессе деформирования существует такой момент вре-

мени dt t= , при котором граница ( )db t  достигает положение границы ( )da t , то есть 

первая область пластического течения перестает существовать. Тогда указанные 

упругопластические границы достигают своего предельного положения 

( ) ( )d da t b t b= = , и во всей области ( )0 r c t   наступает состояние разгрузки. 

При полном нагреве тела вследствие достижения температурного равновесия 

с температурой mT  за характерное время mt t=  граница ( )c t  достигает своего пре-

дельное положения c , и в области c r R    фиксируется уровень накопленных 

деформаций 
p

re , выражение для которых имеет вид 
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Поскольку при полном нагреве величина безразмерной температуры во всем 

теле достигает значения 1 и больше не зависит от времени, то величина m  имеет 

только нулевой член разложения. Тогда 
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Для простоты дальнейших записей введем обобщенную функцию остаточ-

ных деформаций 
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Пусть теперь шар охлаждают до начальной температуры. При полном осты-

вании поле безразмерной температуры во всем теле становится равным 0. Следо-

вательно, 

 ( ), 0r t = . (2.50) 

Поскольку процесс остывания освобождает тело от внешних воздействий, то 

он влечет за собой разгрузку материала. Подстановка в (2.38) и (2.39) обобщенной 

функции остаточных деформаций (2.48) и условия остывания тела (2.50) позволяет 

получить выражения для определения остаточных напряжений и перемещений в 

теле 
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Стоит отметить, что рассуждения, представленные в данном разделе, спра-

ведливы и для процесса охлаждения тела с его дальнейшим нагревом. Поскольку 

поле температур рассматривалось в безразмерной форме, вид приведенных выше 

выражений не изменится. 

С целью дальнейшего сравнения моделей, учитывающих отдельно взятые 

реологические свойства материала, следует совершить ряд предельных переходов. 

Классическим методом для исключения из рассмотрения вязкостных харак-

теристик материала является устремление времени процесса к бесконечности. Од-

нако в случае нестационарного внешнего воздействия применение данного под-

хода не позволяет в должной мере оценить напряженно-деформированное состоя-

ние тела. Поэтому для достижения поставленной задачи следует устремить коэф-

фициент вязкости   к нулю. Это приведет к преобразованию комбинации механи-

чески параметров типа ( )3 h  −  к виду 3 2с +  . 

При необходимости рассмотрения модели материала, не учитывающей его 

упрочнение, следует приравнять коэффициент упрочнения c  к нулю. 

Несложно убедиться, что применение сразу обоих предельных переходов, 

описанных выше, позволяет получить выражения для напряжений и перемещений 

во всех областях деформирования для случая упругопластического материала, 

представленного в [82]. 

Дальнейшее исследование влияния реологических свойств материла на 

напряженно-деформированное состояние тела будем проводить для четырех моде-

лей сплошных сред, обозначенных следующими индексами: 

− c  – модель упрочняющегося упруговязкопластического материала; 

−  – модель упруговязкопластического материала без упрочнения; 

− c  – модель упрочняющегося упругопластического тела; 

− i  – модель упругопластического тела. 
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В качестве примера рассматривается материал со следующими свойствами: 

2 141,172 10  м с− − =  , 
8

0 2,0 10  Паk =  , 109,2 10  Па =  , 104,3 10  Па =  , 

111,2 10  Паc =  , 101,0 10  Па с=   , 70,6 = . Кроме того, зададимся размером шара 

и параметрами его нагрева: 0,2 мR = , 
38,5 10m

− =  , 
11 сx −= . 

Как указывалось ранее, в процессе деформирования тела существуют не-

сколько ключевых моментов времени, определяемых из конкретных условий. В 

таблице 1 приведены значения этих моментов, а также определены положения 

упругопластических границ для каждого из них и их относительные отклонения 

для различных моделей сред. Интересным фактом является то, что все значения, 

приведенные в столбцах для упругопластического и упрочняющегося упругопла-

стического тела идентичны (см. столбец c i− ). Это связано с отсутствием для дан-

ных случаев в уравнениях механики твердого тела временного фактора в явном 

виде, в отличие от моделей с присутствующими вязкостными характеристиками. 

Таблица 1 – Значения характерных величин 

Величина 
Модель среды Относительное отклонение, % 

i  c   c  c i−  c−  i−  c c−  c i−  

pt , c 0,282 0,282 0,475 0,352 0,000 25,94 68,76 24,98 24,98 

ut , c 2,988 2,988 3,179 3,058 0,000 3,819 6,417 2,353 2,353 

rt , c 11,76 11,76 11,97 11,83 0,000 1,158 1,801 0,622 0,622 

dt , c 25,32 25,32 25,49 25,38 0,000 0,414 0,684 0,267 0,267 

( )ua t  0,876 0,876 0,875 0,876 0,000 0,046 0,054 0,008 0,008 

( )ra t  0,726 0,726 0,725 0,726 0,000 0,044 0,051 0,007 0,007 

( )rb t  0,859 0,859 0,859 0,859 0,000 0,049 0,057 0,008 0,008 

a b =  0,666 0,666 0,667 0,666 0,000 0,002 0,002 0,000 0,000 

( )dc t  0,957 0,957 0,958 0,957 0,000 0,005 0,006 0,001 0,001 

c  0,790 0,790 0,790 0,790 0,000 0,001 0,003 0,001 0,001 

На рисунке 3 представлены распределения радиальной и окружной компо-

нент напряжений в шаре для всех моделей сред. Для упругопластического матери-

ала данные графики в точности совпадают с приведенными в [82]. Исходя из полу-

ченных результатов, можно сделать вывод, что введение в рассмотрение параметра 

упрочнения приводит к существенному изменению величины напряжений, в то 
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время как влияние на них вязкостных характеристик материала быстро уменьша-

ется с течением времени. Аналогичный вывод можно сделать, анализируя распре-

деление остаточных напряжений в теле (рисунок 4), из которого, как и из фор-

мулы (2.48), следует, что величина остаточных напряжений при полном нагреве 

тела не зависит от вязкости в явном виде. 
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(a) – момент pt ; (b) – момент ut ; (c) – момент rt ; (d) – момент dt  

Рисунок 3 – Распределение безразмерных напряжений 
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Рисунок 4 – Распределение безразмерных остаточных напряжений 

Из рисунка 5 следует, что остаточные перемещения для моделей, проявляю-

щих упрочняющееся поведение, по абсолютной величине существенно меньше, 

чем для моделей без упрочнения. Для наглядности на данном рисунке значения пе-

ремещений были увеличены в 10000 раз. 

 

Рисунок 5 – Распределение безразмерных остаточных перемещений 
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Взаимное расположение упругопластических границ ( )a t  и ( )b t , приведен-

ное на рисунке 6, позволяет сформировать представление о размерах области пер-

вого пластического течения, ограниченной построенным кривыми, а также о ее рас-

положении в теле в различные моменты времени. Нижняя область графика отно-

сится к области упругого деформирования, а верхняя – к зоне разгрузки. На данном 

рисунке видно, что зависимость положения границы ( )b t  от времени близка к ли-

нейной, а скорость ее движения выше, чем для границы ( )a t , которая приближа-

ется к своему предельному положению более плавно. 

 

Рисунок 6 – Безразмерная координата упругопластических границ ( )a t  и ( )b t  

Исходя из данных, приведенных в таблице 1 и на рисунке 6 можно сделать 

вывод, что для всех четырех реологических моделей сред предельное положение 

упругопластических границ имеет практически одинаковые радиальные коорди-

наты. 
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2.3 Численное моделирование 

Далее, с целью верификации полученного аналитического решения выпол-

ним численное моделирование поставленной задачи. В современных пакетах и си-

стемах анализа методом конечных элементов в явном виде не представлена реоло-

гическая модель среды, рассматриваемая в настоящей работе. Однако, необходи-

мые свойства могут быть получены путем комбинации других моделей. Рассмот-

рим две из них. 

В качестве условия пластичности в модели кинематического упрочнения Ша-

боша (Chaboche kinematic hardening) [95–96, 98] рассматривается условие Мизеса 

в форме 

 ( )
2 23

2
y

  −  =  , (2.53) 

а введение в рассмотрение скорости пластических деформаций в модели экспонен-

циального вязкого упрочнения (exponential visco-hardening, EVH) [98] осуществля-

ется соотношением 

 

1

0

1

im
n

p

eq

i i

e
K=

  − 
=  

 
 . (2.54) 

В (2.53)–(2.54)   и   обозначают девиаторы тензоров действительных   и оста-

точных   напряжений; 

 y  – предел текучести; 

 0  – условный предел текучести; 

 im  – некоторые параметры, которые могут быть определены эмпирическим пу-

тем; 

 iK  – параметры вязкости. 

Величина 0  определяется по формуле 

 ( )0 0 1 e
p
eqbep

y eqR e R
−

 =  + + − , (2.55) 

где 0R  – коэффициент линейного упрочнения; 
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 R  – коэффициент экспоненциального упрочнения; 

 b  – скорость насыщения. 

Аналогом ассоциированного закона пластического течения для модели Ша-

боша является выражение 

 
2

=
3

p ped c d ed−  , (2.56) 

где c  и   – параметры материала; 

 
pe – амплитуда изменения пластических деформаций. 

Нетрудно видеть, что предельный переход 0→  приводит к преобразова-

нию модели Шабоша к модели линейного трансляционного упрочнения Ишлин-

ского–Прагера [97], а при 3 2с с=  и ( )2 ,y k r t =  соотношения (2.53) и (2.56) в точ-

ности переходят в (1.26) при отсутствии вязкости ( 0= ). 

Как и для модели кинематического упрочнения Шабоша, для модели экспо-

ненциального вязкого упрочнения возможно совершить передельный переход к од-

ной из модификаций модели среды, для которой проводилось аналитическое реше-

ние. Действительно, если задать значения коэффициентов 1n = , 1 1m = , 1K =  , 

( )2 ,y k r t = , 0 0R R= = , соотношения (2.54)–(2.55) приму ту же форму, что 

и (1.26) без учета упрочнения ( 0с = ). 

Таким образом, модель для проведения вычислительного эксперимента стро-

ится на реологических моделях классического изотропного сжимаемого упругого 

тела, подверженного температурным воздействиям, модели кинематического 

упрочнения Шабоша (2.53), (2.56) и модели экспоненциального вязкого упрочне-

ния (2.54), (2.55). 

Правомерным допущением при проведении вычислительного эксперимента 

вследствие выполнения условия сферической симметрии является исследование на 

плоскости сектора 90° диаметрального сечения шара. Один из его радиусов может 

быть определен в модели в качестве оси вращения, а на втором дополнительно за-

дается условие симметрии. На рисунке 7 приведена применяемая конечно-элемент-

ная модель, на которой зеленым обозначена ось вращения, желтым – ребро, 
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являющееся осью симметрии, красным – дуга, на которой задаются температурные 

граничные условия. 

 

Рисунок 7 – Расчетная модель 

Поскольку температура является функцией двух переменных, то для анализа 

полученных результатов целесообразно перейти от нее к функциям одной перемен-

ной, в частности, радиуса. Вследствие того, что значение температуры на поверх-

ности задано в явном виде, ее сравнение не является информативным. Поэтому 

вместо нее рассмотрим значение в центре шара. 

Ввиду того, что необходимо провести оценку результатов во всей геометри-

ческой области, дополнительно исследуем среднее интегральное значение темпе-

ратуры, определяемое выражением 

 ( ) ( )
0

1
,

R

T t T r t dr
R

=  . (2.57) 
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График наложения перечисленных величин, полученных аналитическим (с 

верхним индексом А ) и численным (с верхним индексом Ч ) путем, представлен 

на рисунке 8. 

 

1 – ( )АT t ; 2 – ( )ЧT t ; 3 – ( )0,АT t ; 4 – ( )0,ЧT t  

Рисунок 8 – Распределение безразмерной температуры 

Анализ графических зависимостей позволяет установить, что полученные 

аналитические выражения в достаточной мере адекватно описывают процесс 

нагрева тела. 

При аналитическом решении задачи механики деформируемого твердого 

тела были определены значения моментов времени возникновения и вырождения 

областей с различающимися реологическими свойствами, а также предельные по-

ложения упругопластических границ. Аналогичные величины были определены в 

ходе вычислительного эксперимента. Данные результаты вместе с относительным 

отклонением представлены в сравнительной таблице 2. 
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Таблица 2 – Сравнение результатов аналитического решения и численного 

моделирования 

Величина 
Аналитическое 

решение 

Вычислительный 

эксперимент 
Отклонение, % 

pt , c 0,352 0,302 14,36 

ut , c 3,058 3,052 0,19 

rt , c 11,829 11,930 0,86 

dt , c 25,383 25,453 0,28 

a b =  0,6665 0,6667 0,02 

c  0,7900 0,7960 0,75 

Величина относительного отклонения полученных результатов друг от друга 

для всех величин, кроме pt , составляет менее 1 %, что свидетельствует о коррект-

ности применяемых моделей. Расхождения же в определении момента возникнове-

ния области пластического течения достаточно велики (~15 %). Данный факт не 

приводит к противоречию, поскольку в начальные моменты времени, когда дли-

тельность процесса еще не превышает 0,5 c, градиент температуры вблизи поверх-

ности шара крайне высок, а в конечно-элементной модели присутствует особая 

зона (центр шара), в которой возникают дополнительные вычислительные погреш-

ности. 

После сравнения количественных показателей процесса, проведем каче-

ственное исследование поведения материала. В фиксированные моменты времени 

напряжения являются функциями одной (пространственной) переменной. Их без-

размерное распределение на различных этапах нагрева представлено на рисунке 9, 

а после полного остывания тела – на рисунке 10. Нетрудно видеть, что результаты 

аналитического решения полностью согласуются с результатами численного моде-

лирования. 
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1 – 
А

r ; 2 – 
Ч

r ; 3 – А

 ; 4 – Ч

 ; 

(a) – момент pt ; (b) – момент ut ; (c) – момент rt ; (d) – момент dt  

Рисунок 9 – Распределение безразмерных напряжений 
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1 – 
А

r ; 2 – 
Ч

r ; 3 – А

 ; 4 – Ч

  

Рисунок 10 – Распределение безразмерных остаточных напряжений 

Таким образом, было сопоставлено аналитическое решение задачи, приве-

денное в разделах 2.1–2.2, и проведенный вычислительный эксперимент для ана-

логичной постановки с применением моделей Шабоша и экспоненциального вяз-

кого упрочнения. Анализ полученных результатов позволил сделать вывод об их 

сходимости относительно друг друга, а также необходимости использования суще-

ственно малого шага дискретизации по времени в начале процесса для уменьшения 

негативных эффектов, связанных с погрешностью методов, применяемых в про-

цессе вычислительного эксперимента. 

2.4 Сходимость функциональных рядов и оценка остаточного члена ряда 

В основе метода Фурье при решении задачи теплопроводности в разделе 2.1 

и, как следствие, применении полученных выражений в разделе 2.2 лежит предпо-

ложение о применимости формулы Грина [92, c. 123] для рассматриваемых 
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соотношений. Данный факт требует дополнительной проверки сходимости полу-

ченных функциональных рядов. 

Докажем равномерную сходимость функционального ряда (2.8), определяю-

щего распределение безразмерной температуры в теле. Выполним оценку сверху 

членов его ряда ( ), , 1nu t n   по абсолютной величине: 
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 −

 (2.58) 

Рассмотрим второй множитель в (2.58). Длина дуги окружности единичного 

радиуса с центральным углом 0   равна  , в то время как катет треугольника, 

образованного хордой дуги, осью абсцисс и перпендикуляром к ней, равен ( )sin  . 

Т. к. гипотенуза прямоугольного треугольника (в данном случае хорда дуги окруж-

ности) больше любого из его катетов (в частности, описанного перпендикуляра), а 

длина дуги окружности больше длины хорды, соединяющей ее концы, то 

 ( )
( )sin

sin 1


    


.  

Данное выражение в пределе 0→  дает первый замечательный предел и равно 

единице. 

Таким образом, установлено, что 

 
( )sin

1
n

n

 
 

 
. (2.59) 

В последнем множителе в правой части (2.58) введем замену 
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2 2

2

n
t x

R

 
  − =  
 

  

и проверим полученное выражение на разрыв в точке 0 = : 

 
0

e 1
lim t t

−

→

−
 =


. (2.60) 

Поскольку предел в (2.60) существует и конечен, то точка 0 =  является точ-

кой устранимого разрыва. 

Оценим теперь исследуемую функцию на предмет возрастания или убывания 

при xt  − , что справедливо для 0n  : 

( )( ) ( )

( )
( ) ( ) ( )

( )

2

2 2

2

e 1 sgn e 1 e e 1 sgnd

d

1 ( 1), 01 1 e e
sgn sgn e 1 e 1

( 1) 1, 0

e
1 e

t t

t
t

t

− − − −

− −
− 

−


 − − −  − − 
  =  =
    

 −  −  + 
 =     − =  −  +  =  −     


 =   + − 

 (2.61) 

Очевидно, что дробь 
2et −   принимает только неотрицательные значения. 

Кроме того, при 0 =  справедливо ( )1 e 0  + − =  , а также величина 

 ( )( )
d

1 e 1 e
d

 + − = −


  

положительна при 0   и отрицательна при 0  . Следовательно, ( )1 e  + −   

возрастает при 0  , обращается в 0 при 0 =  и убывает при 0  , т. е. точка 0 =  

является точкой максимума функции ( )1 e  + −  , и для любого   справедливо не-

равенство ( )1 e 0  + −   . Таким образом, 

 
e 1d

0
d

t

− −
  
  
 

. (2.62) 

Тогда максимум функции e 1t − −   достигается на левом конце интер-

вала, на котором определено  , т.е. при 1n = . 
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Таким образом, из (2.60)–(2.62) следует, что все множители в правой ча-

сти (2.58) принадлежат множеству  \+ + . Поэтому можно временно исключить 

из рассмотрения первые 0 1n −  членов ряда, где 0n  выбрано таким образом, чтобы 

выполнялось неравенство 
2 2

2
0

n
x

R


 −  . При этом сумма конечного числа отбро-

шенных членов ряда, которые являются конечными числами, также будет конечна. 

Тогда можно оценить правую часть в (2.58): 

 
( )

2 2

2
2

2

2 2 22 2
2

2 22

e 1

sin 2 e
2 e 2e

n
x t

R

t
t t

x
x x

x R
n x

x
n x Rn n

x nx
RR

 
−  −  
 

−
− −

−
      = 

  
 − −  −

 

. (2.63) 

Из вышеизложенного следует, что члены исходного функционального ряда, 

начиная с некоторого 0n  могут быть промажорированы числовым рядом 

 ( )

2

2

2
2

2

, 2e ext t

n

x

n n

x R

u t a a
x R

n

− −


    = 

− 
 

 (2.64) 

Воспользуемся интегральным признаком Коши–Маклорена [99, с. 26] для 

доказательства сходимости ряда na . Введем замену вида 

 
R x

 =
 

  

и вычислим несобственный интеграл 

 

0

2

0

2 2

0

2 ln
n

n
I dn

n n

+   + 
=  =    

−  −  
 . (2.65) 

Для рассматриваемого процесса величина   является постоянной положи-

тельной конечной величиной. При этом при выборе номера 0n  было задано условие 

0 0n −   . Тогда натуральный логарифм в (2.65) существует, конечен и принимает 

значение больше единицы. Следовательно,  \I + +  как произведение поло-

жительный конечных величин, т.е. несобственный интеграл I  сходится. 
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Таким образом, можно сделать заключение, что согласно интегральному при-

знаку Коши–Маклорена сходится мажорантный ряд, и, как следствие, равномерно 

сходится исходный функциональный ряд согласно мажорантному признаку Вейер-

штрасса [99, с. 86]. Кроме того, данный функциональный ряд достаточное количе-

ство раз дифференцируем и интегрируем [99]. 

Подводя итог приведенных рассуждений, можно утверждать, что доказана 

равномерная сходимость рассматриваемого функционального ряда для темпера-

туры и, соответственно, применимость формулы Грина при решении задачи тепло-

проводности. 

Проведем оценку остаточного члена функционального ряда. Пусть nr  – оста-

ток мажорантного числового ряда, ns – остаток исходного функционального ряда. 

Тогда 

 ( ) ( ) ( )
0 0 0

, , ,n n n n n n n

n n n n n n

u t a r a u t u t s
+ + +

= = =

   =     =   . (2.66) 

Следствием признака интегральной сходимости Коши–Маклорена [99, с. 26] 

является оценка остатка ряда. Наложим на него дополнительное требование о 

непревышении некоторой величины 0  : 

 nr I   .  

В (2.64) последняя оценка, получаемая при отбрасывании множителя e
tx−
, 

дает излишне завышенные значения. Поэтому далее будет рассматривать усилен-

ное требование, что не противоречит предыдущим рассуждениям: 

 e e tx xt

nr I− −   . (2.67) 

Подберем такой 0n , чтобы выполнялось условие (2.67): 

 

e

0
0 e

0

e 1
e ln

e 1

xt

xt

x

R x

t

R x

n R x
n

n



 
−



 

 
 

 +  +         −      
−  

 (2.68) 

Здесь и далее оператором .    будем обозначать округление вверх. 

Оценка (2.68) полностью согласуется с выбором номера 0n . 
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Анализ выражений для напряжений, перемещений и деформаций в рассмат-

риваемой задаче показывает, что каждое из них линейно зависит от величин 

 
2 2

1 1

2

3

2

1 1
, , , , ,

r r

r r

r r r
t r t dr t dr

R r R r R

     
        
     

  , (2.69) 

где    1 2, 0,r r R . 

Последовательно применяя теорему о почленном интегрировании ря-

дов [99, с. 99] и теорему о среднем [100, с. 604] для выражений (2.69), можно полу-

чить их верхнюю оценку. 

 ( )

( )

2 2

1 1

2

1

2 2

3 3
1 12 2

2 2

2 13 3
1 12 2

2 2
2 1 2 2

3 3
1 1 12 2
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, ,

1 1
, ,

,

r r

n n

n nr r

r

c
n c n
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c c
n n n

n n n

r r
r u t dr r u t dr

r R r R

rr
r u t dr r u t r r

r R r R

r r r r r r
u t a a

r R r

 

= =

 

= =

 

= = =

    
 =      

     

  
  =   −



 
 

=   
   

− 
=    =







 

  

 

  ,




 (2.70) 
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1 1 1
1 1 1

2 1 2
2 1

1 1 11

1 1 1
, , ,

1
, , .

r r r

n n n

n n nr r r

c
n n n

n n nc c

r r r
u t dr u t dr u t dr

r R r R r R

rr r rr
u t r r u t a

r R r R r

  

= = =

  

= = =

       
 =    =       

         

−   
=   − =      

   

    

  

 (2.71) 

Здесь 1 2[ ],cr r r – некоторая точка. 

Нетрудно видеть, что все функциональные ряды в (2.69) могут быть прома-

жорированы тем же числовым рядом, что и функциональный ряд для температуры. 

Следовательно, они также сходятся равномерно. При этом для их остаточных чле-

нов справедливы оценки nr , nr  и 2 1nr r r  соответственно. 

Ранее было упомянуто, что напряжения, перемещения и деформация линейно 

зависят от функций (2.69). Тогда 
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R r R r R

r r r
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r
A r B r C r D r

r

     
 +    +        

     

     
   +    +        

     

  +  +     

 

  , (2.72) 

где iA , iB , iC  – некоторые числа, равные сумме коэффициентов при выраже-

ниях (2.69); 

 2

1

0i i i i

r
D A B C

r
= + +   – суммарный «передаточный» коэффициент. 

Задавшись требуемым значением величины  , подберем соответствующее 

значение 0n : 

 

e

0
0 e

0

e 1
e ln

e 1

xt

i

i

xt

R x
D

t

i

R x
D

x n R x
D n

n




 

−




 

 
 

 +  +         −      
−  

. (2.73) 

Пусть с некоторого момента времени  t  справедливо, что e 0xt− → , 

2 2

2

0e

n
x t

R

 
−  −  

  → . Тогда из (2.58) следует, что для всех членов ряда ( ),nu t , т. е. при 

1n  , выполняется соотношение ( ), 0nu t → . Таким образом, все члены исход-

ного ряда, начиная с 1n  , становятся много меньше нулевого члена, т. е. можно 

перейти к рассмотрению единственного члена ряда. 

Количественная оценка остатка применяемых рядов при различных   и iD  

приведена на рисунке 11. Обе оси графика построены в логарифмических коорди-

натах. Очевидным выводом является факт необходимости вычисления большего 

количества членов ряда для достижения лучшей точности. Кроме того, при прочих 

равных условиях увеличение значения комплекса   (например, за счет увеличения 

скорости нагрева) влечет за собой увеличение необходимого количества членов 

ряда для достижения той же точности вычислений. 
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Рисунок 11 – Оценка остаточного члена ряда в момент 0t =  

На рисунке 12 представлена зависимость необходимого количества (2.68) 

членов функционального ряда от текущего момента времени для различных значе-

ний требуемой точности вычислений   и комплекса  . Анализ полученных графи-

ческих результатов показал, что комплекс   является определяющим фактором для 

асимптотического количества членов ряда при t t . Увеличение требуемой точ-

ности вычислений приводит к увеличению рассматриваемого количества членов 

ряда 0n  только на отрезке  0,t t , а далее не оказывает на него влияния. 

 

Рисунок 12 – Зависимость оценки необходимого количества членов ряда от 

времени 
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При малых t  сходимость функциональных рядов (2.69) достигается при до-

статочно большом количестве членов вследствие околонулевого значения знаме-

нателя в приведенных оценках. В этом случае решение (2.8) может быть преобра-

зовано с использованием свойств тэта-функции Якоби [101], формулы суммирова-

ния Пуассона [102] или операторным методом [92]. Однако, начиная с момента 

времени  t , ряды вида (2.69) становятся настолько быстросходящимися, что их 

первый член преобладает над суммой всех остальных. В таком случае можно вер-

нуться к оценке (2.58) и утверждать, что достаточно рассмотрения только одного 

члена ряда. 

Таким образом, была доказана равномерная сходимость функциональных ря-

дов, применяемых при определении напряженно-деформированного в задаче тер-

модеформирования сплошного шара, выполненного из упрочняющегося упруговя-

зкопластического материала, вместе с их частными производными, что подтвер-

ждает выполнения условий применимости формулы Грина и, как следствие, кор-

ректность полученного решения. Кроме того, проведена оценка остаточных членов 

указанных рядов, и получено выражение для определения количества членов, до-

статочного для вычислений с заданной точностью. 

2.5 Деформирование сплошного шара с полиномиальной зависимостью 

предела текучести от температуры 

В разделе 2.2 был рассмотрен случай линейной зависимости предела текуче-

сти материала от температуры. Однако данное допущение является справедливым 

лишь для узкого круга материалов. Например, на практике для различных марок 

сталей и сплавов, может быть справедлива полиномиальная форма зависимости 

предела текучести от температуры. 

Пусть изменение предела текучести описывается полиномиальной функ-

цией: 
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 ( ) ( )0

0

, ,
m

l

l

l

k r t k r t
=

=   , (2.74) 

где 0 1 = ; 

 ( )1,l l m =  – коэффициенты, определяемые таким образом, чтобы ( ),k r t  оста-

валась неотрицательной монотонной убывающей функцией температуры. 

Выражая величину ( ),r t  через поле безразмерной температуры (2.10), пре-

образуем выражение (2.74): 

 ( )   ( )  
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, ,
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0 1 0

, e

l
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n j h n j tl

l m

l j n

k r t k r
+

−

= = =

 
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 
  . (2.75) 

Раскрытие скобок в соотношении (2.75) позволяет получить окончательной 

форму записи для предела текучести: 

 ( ) ( )
1 2

2
, ,

0

0 0 0 0 1 1

, ... eq q

l

lm
n j h n j tl

l m

l n n n j q

k r t k r
+ + +

   −   

= = = = = =

 
=    

 
    . (2.76) 

В формуле (2.76) суммирование по 1, , ln n  ведется в том смысле, что при 

0l =  выражение в фигурных скобках принимает значение 1. 

По аналогии с (2.11) для всех величин ( ),F r t  дальнейшее рассмотрение сле-

дует проводить в форме 

 ( )   ( )1

1 2

2
,, , , ,

0 0 0 0 1 1

, ... e ql

l

lm
h n j tl n n j

l n n n j q

F r t F r
+ + +

 −  

= = = = = =

=  


,  

однако поскольку для случая предела текучести, зависящего от температуры ли-

нейно, результаты уже были получены в разделе 2.2, то для упрощения дальнейших 

вычислений будет рассматриваться форма записи 
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 (2.77) 
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Суммирование во втором слагаемом соотношения (2.77) по l  ведется в том 

смысле, что при значениях 2m   оно обращается в нуль. Величины   ( ),n j
F r  пер-

вого слагаемого в данном случае рассматриваются как известные. 

Аналогично тому, как это было сделано в разделе 2.2, преобразуем уравнения 

(1.23)–(1.25), (1.27)–(1.29), (1.33)–(1.35) к виду 

 
  ( )1

1 2
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,, , , ,
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... e 0ql

l
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G r
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=  


. (2.78) 

Поскольку, как и ранее, каждое из уравнений вида (2.78) справедливо во всем 

объеме тела 0 r R   на протяжении всего процесса 0t  , то для каждого члена 

функциональных рядов справедливы соотношения (2.16)–(2.21) с точностью до ин-

дексов  1, , , ,ll n n j  и ,qn j   , которые в дальнейшем для удобства изложения 

были опущены. 

Поскольку описывающая напряженно-деформированное состояние шара си-

стема уравнений, включая граничные условия и условия сопряжения, для рассмат-

риваемой задачи совпадает с приведенной в разделе 2.2, то выражения, определя-

ющие напряжения и перемещения, возникающие в теле в процессе деформирова-

ния, совпадают с (2.24), (2.26), (2.33), (2.34), (2.38), (2.39), (2.44) и (2.45) с точно-

стью до положения упругопластических границ. Аналогичное заключение справед-

ливо и для постоянных интегрирования. 

С целью выполнения сравнительного анализа напряженно-деформирован-

ного состояния сред, зависимость предела текучести от температуры которых опи-

сывается полиномами разной степени, было проведено сравнение моделей сплош-

ных сред, обозначенных следующими индексами: 

− const  – предел текучести, не зависящий от температуры; 

− I  – линейная зависимость предела текучести от температуры; 

− II  – квадратичная зависимость предела текучести от температуры; 

Ниже рассматривается тело с размерами, физико-механическими свойствами 

и параметрами нагрева аналогичными представленным в разделе 2.2. Коэффици-

енты разложения ( )1,l l m =  удовлетворяют условиям 
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0

0 1
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l

l m

l=

      

Значения моментов возникновения и вырождения областей пластичности, 

разгрузки и повторной пластичности, а также положение границ между ними, пред-

ставлены в таблице 3. Для материала с постоянным пределом текучести, в отличие 

от остальных рассматриваемых моделей, для выбранного набора физико-механи-

ческих свойств момент вырождения первой области пластического течения насту-

пает еще до возникновения в теле области повторной пластичности. Кроме того, 

увеличение скорости изменения предела текучести приводит к увеличению скоро-

сти распространения в теле зон с различающимися реологическими свойствами и 

более глубокому их прониканию. 

Таблица 3 – Значения характерных величин 

Величина 
Порядок полинома Относительное отклонение, % 

const  I  II  I const−  II const−  

pt , c 0,413 0,352 0,347 14,76 1,34 

ut , c 2,859 3,058 3,185 6,96 4,15 

rt , c 43,338 11,828 6,867 72,71 41,95 

dt , c 14,598 25,383 31,837 73,88 25,43 

( )ua t  0,896 0,876 0,870 2,30 0,60 

( )ra t  0,777 0,726 0,787 6,60 8,48 

( )rb t  0,777 0,859 0,936 10,59 8,94 

a b =  0,777 0,666 0,635 14,22 4,66 

( )dc t  – 0,957 0,905 – 5,50 

c  0,951 0,790 0,700 16,92 11,44 

На рисунке 13 представлены распределения радиальной и окружной компо-

нент напряжений в шаре для всех моделей сред. Анализируя полученные графиче-

ские зависимости, можно сделать вывод, что при добавлении в функцию предела 

текучести слагаемых более высокого порядка качественная картина процесса де-

формирования не изменяется, однако это приводит к изменению уровня возникаю-

щих в теле напряжений. Аналогичный вывод следует из исследования графика рас-

пределения остаточных напряжений в теле, приведенного на рисунке 14, на 
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котором отчетливо видно, что уменьшение порядка полинома приводит к умень-

шению остаточных напряжений по абсолютной величине. 
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(a) – момент pt ; (b) – момент ut ; (c) – момент rt ; (d) – момент dt  

Рисунок 13 – Распределение безразмерных напряжений 
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Рисунок 14 – Распределение безразмерных остаточных напряжений 

По изображенным на рисунке 15 распределениям остаточных перемещений 

в теле можно сделать вывод, что увеличение скорости изменения предела текуче-

сти способствует уменьшению величины остаточных напряжений в теле. 

 

Рисунок 15 – Распределение безразмерных остаточных перемещений 
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Как уже отмечалось ранее, введение в рассмотрение слагаемых полиномов 

более высоких порядков приводит к существенному изменению времени деформи-

рования и глубины проникания отдельных областей. Данный факт подтверждается 

при рассмотрении графиков положения упругопластических границ ( )a t  и ( )b t , 

приведенных на рисунке 16. На них наглядно представлено, что глубина проника-

ния области первого пластического течения, а также ее «время жизни» суще-

ственно меньше, чем для материала с пределом текучести, описываемым линейной 

функцией температурного поля. С другой стороны, отличие времени и глубины 

распространения первой пластической зоны для линейной и квадратичной функ-

ции менее выражено. 

 

Рисунок 16 – Безразмерная координата упругопластических границ ( )a t  и ( )b t  

2.6 Выводы по главе 2 

В ходе исследования напряженно-деформированного состояния упрочняю-

щегося упруговязкопластического сплошного шара были получены определяющие 
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соотношения в областях пластического течения, зоны разгрузки и области повтор-

ного пластического течения для случая линейной зависимости предела текучести 

от температуры и его обобщения – полиномиальной формы зависимости. Установ-

лено, что возникновение, развитие и вырождение областей с различающимися рео-

логическими свойствами зависят от скорости процесса нагрева (охлаждения) тела. 

В указанных соотношениях совершены предельные переходы к моделям упруго-

пластического, упрочняющегося упругопластического и упруговязкопластиче-

ского материалов, и выполнен сравнительный анализ указанных моделей сред. 

Выполнено численное моделирование с применением моделей Шабоша и 

экспоненциального вязкого упрочнения с целью верификации полученных анали-

тических результатов, в ходе которого была выявлена сходимость указанных ре-

зультатов относительно друг друга. Кроме того, доказана сходимость полученных 

функциональных рядов и, как следствие, выполнение условий применимости фор-

мулы Грина, а также получены оценки остаточного члена ряда и необходимого ко-

личества членов функциональных рядов для проведения расчетов с заданной точ-

ностью. 
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Глава 3 Пластическое течение полого шара при нестационарном нагреве 

внешней поверхности 

Пусть теперь в центре рассмотренного в главе 2 шара имеет место сфериче-

ская полость радиуса 1R  с теплоизолированной поверхностью. Для удобства пере-

обозначим через 2R  радиус внешней поверхности шара, подверженной как и 

прежде нестационарному тепловому воздействию по закону (2.1). Начальная тем-

пература тела в каждой его точке равна 0T , а силовые нагрузки на обеих его поверх-

ностях отсутствуют. 

3.1 Решение задачи теплопроводности 

Для рассматриваемой задачи система уравнений, содержащая уравнение 

Фурье нестационарной теплопроводности (1.20), начальное условие (1.21) и гра-

ничные условия (1.22) на поверхностях шара, принимает вид 
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Введем в соотношениях начально-краевой задачи (3.1) подстановку 

 ( )
( ) 0

0

,
,

m

T r t T
r t r

T T

−
 = 

−
 (3.2) 

и перейдем к безразмерным координатам: 
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где 1
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 – безразмерная координата; 
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Представим неизвестную функцию ( ),t   в виде суммы функций ( ),U t  и 

( ),V t , причем ( ),U t  должна удовлетворять только начальным и граничным 

условиям. Тогда для функции ( ),V t  после подстановки в (3.3) будет справедлива 

система 
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Пусть функция ( ),U t  определяется соотношением 

 ( ) ( )( ) ( )2 1 1 1 e, xtU t R R R − −   −= +  .  

Тогда система (3.4) примет вид 
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Следуя [92], выпишем решение задачи (3.5) 
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где n  – корни уравнения ( )tan 0n n h +  = . 

Тогда окончательное выражение для безразмерной температуры примет вид 

 

( )
( )

( )
( ) ( )

( ) ( )

2

2 1

1

2

2

21

2

0

2

1

1

0

2

e e

cos sin2
1

sin

,
,

n t
R R xt

xt n n

n

n

n n
n

m

T t T
t

T T

h h R R R

x

hR
e

x
R R

 
− 

− − 


−

=

 −


 
 

 = =
−

−

=
 + +    −


+

+
 





 
   +    − 

  
 − 

− 



 (3.6) 

По полученным аналитическим зависимостям было построено распределе-

ние поля безразмерной температуры в теле в различных сечениях по времени, пред-

ставленное на рисунке 17. Можно видеть, что областью с наибольшим температур-

ным градиентом является внешняя поверхность шара, а также имеет место посте-

пенное уменьшение температурного градиента с течением времени вплоть до его 

полного исчезновения и установления во всем теле постоянной температуры. 
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Рисунок 17 – Распределение поля безразмерной температуры 

Аналогичный вывод о расположении в теле области с наибольшим темпера-

турным градиентом можно сделать, непосредственно проанализировав соотноше-

ние для безразмерной температуры (3.6). 

3.2 Решение задачи механики деформируемого твердого тела 

Как и в разделе 2.2 будем рассматривать линейно зависящий от температуры 

предел текучести (2.9). Исходя из тех же соображений, что и в главе 2, все неиз-

вестные величины будет искать в форме (2.11) с точностью до 
 ,n j

h : 
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2 1
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Как и ранее, можно показать, что уравнения (1.23)–(1.25), (1.27)–(1.29) после 

проведения разложения (2.11) приводятся к виду (2.14), а затем – к виду (2.16)–

(2.20). 
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Граничными условиями, как следует из постановки задачи, являются отсут-

ствие внешних нагрузок на внешней и внутренней поверхностях шара: 

 
1 2

0r rr R r R= =
 =  = . (3.7) 

Поскольку система уравнений (2.16)–(2.20) соответствует системе, использу-

емой в задаче о сплошном шаре , то выражения для напряжений, деформаций и 

перемещений будут иметь вид, аналогичный приведенному в разделе 2.2 с точно-

стью вводимых констант, неизвестных интегрирования и упругопластических гра-

ниц. 

В зависимости от параметров нагрева и свойств материала, из которого изго-

товлен шар, зарождение и развитие зон пластичности, разгрузки и повторной пла-

стичности может происходить не только на внешней поверхности, как это было для 

случая сплошного шара, но и на внутренней. Причем, если последовательность их 

развития во внутренней и внешней области независимо друг от друга очевидна: 

сперва возникает область пластического течения, затем зарождается зона раз-

грузки, а после появляется область повторного пластического течения – то согла-

сованность этих процессов в двух указанных частях тела в явном виде отсутствует. 

Данный факт вносит существенную сложность в анализ напряженно-деформиро-

ванного состояния и отражен на рисунке 18 в виде дерева эволюции зон с отлича-

ющимися реологическими свойствами, для которого приняты следующие обозна-

чения: 

− E – упругая область; 

− P – области пластического течения; 

− U – зоны разгрузки; 

− R – области повторного пластического течения; 

− желтая сплошная линия с кружками на концах – возникновение области 

пластического течения; 

− зеленая пунктирная линия с кружками на концах – возникновение зоны 

разгрузки; 
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− синяя штрихпунктирная линия с кружками на концах – возникновение об-

ласти повторного пластического течения; 

− красная сплошная линия с крестиками на концах – вырождение области 

пластического течения. 

 

Рисунок 18 – Дерево эволюции зон с различающимися реологическими 

свойствами 

Рассмотрим наиболее общий случай, когда в теле в течение некоторого вре-

мени существуют одновременно все семь зон RUPEPUR


 . Запишем для каждой из 

них выражения для напряжений, перемещений и пластических деформаций (если 

они существуют в рассматриваемой зоне), а также констант интегрирования: 
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− упругая область: 
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− внешняя область пластического течения 
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− внутренняя область пластического течения 
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− внешняя зона разгрузки 

( )
( )

( )
( )

( ) ( ) ( )

1

3

7

2

3 3

2

2 2

7
3

2

6

32

3

2

1

ˆ 4
d d ,

ˆ
d d ,

3 2 3 2 4

1
2 d d

2

2

2

pr r
ru

r

b b

pr r
ru

r

b b

c

u

u

u u

i

u

Ri

a

j b

e B
A

r r

e rA Br
u

r r

k k
A R

R
R

R

=

−

 
   −      + +



 
=   +      + −

 +    +  

   −  
−  −     −  +   

       

− 


=

=

+ −   
 



 

 

  












 




( ) ( ) ( )

( ) ( ) ( ) ( )

( )

25

0

3
7 5

3 32

2 2

6 01

3

2

3
max 1,2

3

1

7

3 3

3

1
d d

ˆ ˆ1 1
2 d 2 d

11
4

i

i

i i

i i

Rb

j a c

b p pc
r r

j jc b

j i i

j

k k

e eR
R R

R

R

R R

=

−

= =

= +

     
    −  + 

       

   −  −   
 +  −    +  −     +   

          

− 
+   −






 


  

  

  











( )

( )( )

( )

( )

( )

( )( ) ( )

( )

( )( )

( )

1

1

1min 5,6 6
2

3
0 6 1

3 1 1min 5, min 5,6 6
3 22

2

max 1,6 1 ma

3

1

x 1,6 11

3 3 3 3

11
d

1 1 1 1
d

i

i

i

i

i

i

ji

i j

j j j ji i

j i j j ii ji i

R

R
R

R

+

+

+ 

= = 

+ + 

= + = = + = 







   



     − 
    + −      + 

          

 − − − − 
 +  + −       
   

   

    

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

2

1

2

1

2

1

6

0

2

3

1

3

2

3 2 2

2 3 33

1 2

2
d

d4

2

,

ˆ ˆ
d d d d d

11 1
4d d

i

R

R

Rc a b p pb c
r

u

r

R b a c c b

Ra

R a

i

i

R

k k k k e e
B R

R
R R

=





 

     
=   −   +    

    

−

 +
−   

  

 
+  





−  
 



    
 −  +  −   + 

     

−
    



+   







     

 

 











( ) ( )
7

2 2

0

4d d ,

i

a b

i a= 

   
         
 

 
  −  
     
  





(3.11) 



75 

 

− внутренняя зона разгрузки 

( )
( )

( )
( )

( ) ( ) ( )

1

3

7

2

3 3

2

2 2

7
3

2

2

32

3

2

1

ˆ 4
d d ,

ˆ
d d ,

3 2 3 2 4

1
2 d d

2

2

2

pr r
ru

r

b b

pr r
ru

r

b b

c

u

u

u u

i

u

Ri

a

j b

e B
A

r r

e rA Br
u

r r

k k
A R

R
R

R

=

−

 
   −      + +



 
=   +      + −

 +    +  

   −  
−  −     −  +   

       

− 


=

=

+ −   
 



 

 

  

















( ) ( ) ( )

( ) ( ) ( ) ( )

( )

21

0

3
7 1

3 32

2 2

2 01

3

2

3
max 1,2

3

1

7

3 3

3

1
d d

ˆ ˆ1 1
2 d 2 d

11
4

i

i

i i

i i

Rb

j a c

b p pc
r r

j jc b

j i i

j

k k

e eR
R R

R

R

R R

=

−

= =

= +

     
    −  + 

       

   −  −   
 +  −    +  −     +   

          

− 
+   −






 


  

  

  











( )

( )( )

( )

( )

( )

( )( ) ( )

( )

( )( )

( )

1

1

1min 1,6 6
2

3
0 2 1

3 1 1min 1, min 1,6 6
3 22

2

max 1,2 1 ma

3

1

x 1,2 11

3 3 3 3

11
d

1 1 1 1
d

i

i

i

i

i

i

ji

i j

j j j ji i

j i j j ii ji i

R

R
R

R

+

+

+ 

= = 

+ + 

= + = = + = 







   



     − 
    + −      + 

          

 − − − − 
 +  + −       
   

   

    

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

2

1

2

1

2

1

6

0

2

3

1

3

2

3 2 2

2 3 33

1 2

2
d

d4

2

,

ˆ ˆ
d d d d d

11 1
4d d

i

R

R

Rc a b p pb c
r

u

r

R b a c c b

Ra

R a

i

i

R

k k k k e e
B R

R
R R

=





 

     
=   −   +    

    

−

 +
−   

  

 
+  





−  
 



    
 −  +  −   + 

     

−
    



+   







     

 

 











( ) ( )
7

2 2

0

4d d ,

i

a a

i b= 

   
         
 

 
  +  
     
  




(3.12) 



76 

 

− внешняя область повторного пластического течения 

( ) ( )
( )

( )
( ) ( )

( )
( )

 
( )

30

0

0 0 0

0 2

3

20

3 3

2

22

4 1
d d ,

4 6 3
2 d ,

4 4 1 1
d d ,

3 2 4 3 2 3 2 4 3 2

2 d

4

r

r

r

r

r

r

r

c c

r

p r

r

c

r r

r

r

c c

r

r

r

r

r

k B
A

r r

k r B
e

r r

k rA B
u

r r

k
A

  −
   −      + +




= +  −      +

 

    
= −   +  +      + − +

=

   
 +     +   +    +



  








−  

  

= −


 



 













 


 ( )

( ) ( ) ( )

 
( ) ( ) ( )

1

2
3

6
32

2

01

3
6

32

2

01

2

1

3

3

d

1
2 d d

ˆ ˆ1
2 d 2 d

4

c a

R b

Rb

j a c

b p pc
r r

jc

i

i

i

bi

k

k kR
R

R

e eR
R

R

R

R

=

=

  
 −  + 

   

   −    
 +  −     −  +  

         

   −   
 +  −   +  −      

      


+  








 

  

 















( )

( )

( )( )

( )

( )

( )

( )( ) ( )

( )

( )( )

1
3 1min 6,6 6

2

3 3
0 max 1,7 12

3 1 1min 6, min 6,6 6
32

2

max 1,7 1 max 1,

3 3

1

3 3 3
7 11

3

1 11 1
d

1 1 1 1

i

i

j ji

i j i j

j j

j

i i

i i i i

j ji i

j i j j i

R R

R
R

R

+
+ 

= = + = 

+ +

= + = = + =

     − − 
    − + −      +             

− − − − 
+



−

 


   

  +  
 

   

    ( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1

2

1

2

1

1

6
2

0

2

3

1

3

2

3 2 2

2 3 3

1 2

d

2
d ,

ˆ ˆ
d d d d d

d

4

2

d

1 1

i

i
i

R

R

Rc a b p pb c
r r

R b a c c b

a

R

r

R

k k k k e e
B R

R
R R

+

= 

 
 
 
  




       −
  

 +
−     

     
 −  + 

 


   
=   −   +    

       

+

−   +
    

    +   

 



     



 









( )
( )

( ) ( )
2 7

3

2 2

0

1
d d d ,4 4

i

R a c

i

i

ia a= 

 


  


  
 

−
−  −   

      

          
 
  

  






(3.13) 



77 

 

− внутренняя область повторного пластического течения 

( ) ( )
( )

( )
( ) ( )

( )
( )

0 2

3 3

20

3 3

2

2

3

0

0

0 0 0

2

2

4 1
d d ,

4 6 3
2 d ,

4 4 1 1
d d ,

3 2 4 3 2 3 2 4 3

2

4

2

r

r

r

r

r r

r

r

r

c c

r

p r

r

c

r r

r

r

r

c c

r

r

k B
A

r r

k r B
e

r r

k rA B
u

r r

A R

  −
   −      + +




= +  −      +

 

    
= −   +  +      + − +    

 +     +   +    +    

−
−

= 



  

−  = 

 



 

















( ) ( ) ( )

 
( ) ( )

( ) ( )
 

( )

1

2

7

1

3

2

1

3
7

3 2

2

1
3

1

7

3

7

1
d d

2 d d

ˆ ˆ1
2 d 2 d

4

c ai

i

i

i

j R b

Rb

a c

b p pc
r r

j c b

k k

k kR

R

e eR
R

R

R

=

−

−

=

    
  −  +   

       

    
+  −    −  +  

     

  −    
+  −    +  −    +   

       

+  






  

 

  















( )

( )

( )( )

( )

( )

( )

( )( ) ( )

( )

( )

1
3 1min 0,6 6

22

3 3
0 max 1,1 11 2

3 1 1min 0, mi6 6
32

2

max 1,1 1 ma 1

3 3

1

3 3 3 3
x ,1 11

1 11 1
d

1 1 1 1

i

i

j ji

i j i j

j j j ji

j i j j

i i

i i i ii j

R R R

R
R

R

+
+ 

= = + = 

+ +

= + = = + =

     − −  
    − + −      +        




 


 

     

− − − − 
+  + − 


 
 

   

  
( )

( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1

2

1

2

1

1

n 0,6
2

0

2

3

1

3

2

3 2

2 3

1

d

2
d ,

ˆ ˆ
d d d d d d

1 1
d

4

2

i

i

i

i

R

R

Rc a b p pb c
r r

R b a c c b

r

a

R

R

k k k k e e
B R

R
R

+

= 

 
 
 
 



 
       −
  

 +
−     

 

 

    
=   −   +    

    

   
 −  +

  

+

 −   + 
  



  

    +

  



     



 









( )
( )

( ) ( )
2 7

3 3

2 2 2

02

1
,4 4d d d

i

R a a

i cia

i

R = 

    
 −  +   

      

 −
       



   


 



 


  





(3.14) 

где нижняя ( , ,a b c ) и верхняя ( , ,a b c


) дуги обозначают принадлежность упруго-

пластических границ к внешней и внутренней частям шара соответственно; 
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1 2R c b a a b c R =  


  – обобщенный вектор упругопластических 

границ, включающий также границы шара (радиусы его внутренней и внешней по-

верхностей). Индексация при этом начинается с нуля. 

Дополнительно были деланы следующие замены для физико-механических 

параметров среды в выражениях (3.8)–(3.14): 
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Взаимное расположение областей деформирования вместе с упругопластиче-

скими границами между ними представлено на рисунке 19. 

 

Рисунок 19 – Расположение областей с различающейся реологией и 

упругопластических границ при существовании всех семи зон 

Для исключения из рассмотрения отдельных областей необходимо прирав-

нять в (3.8)–(3.14) положение соответствующей упругопластической границы ра-

диусам 1R  или 2R : 

− для исключения внутренней области повторного пластического течения – 

1c R= ; 

− для исключения внутренней зоны разгрузки (вместе с внутренней обла-

стью повторного пластического течения) – 1b c R= = ; 

− для исключения внутренней области пластического течения (вместе с 

внутренней зоной разгрузки и внутренней областью повторного пластического те-

чения) – 1a b c R= = = ; 
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− для исключения внешней области пластического течения (вместе с внеш-

ней зоной разгрузки и внешней областью повторного пластического течения) – 

2a b c R= = =


; 

− для исключения внешней зоны разгрузки (вместе с внешней областью по-

вторного пластического течения) – 2b c R= =
 

; 

− для исключения внешней области повторного пластического течения – 

2c R=


; 

Положение упругопластических границ определяется согласно следующим 

условиям (если для границы приведено несколько условий, то любому из них 

вследствие их эквивалентности): 

1. для границ ,a a


 : 

− отсутствие пластических деформаций; 

− достижение упругими напряжениями уровня, соответствующего началу 

пластического течения; 

− выполнение условия сопряжения окружной компоненты напряжений. 

2. для границ ,b b


 : 

− равенство нулю скорости пластических деформаций; 

3. для границ ,c c


 : 

− равенство пластических и остаточных деформаций; 

− достижение напряжениями из зоны разгрузки уровня, соответствующего 

началу повторного пластического течения; 

− выполнение условия сопряжения окружной компоненты напряжений. 

Через ,p pt t


  обозначим моменты возникновения областей пластического те-

чения, через ,u ut t


  – моменты возникновения зон разгрузки, через ,r rt t


  – моменты 

возникновения областей пластического течения, ,d dt t


  – моменты вырождения об-

ластей пластического течения. Нижние и верхние дуги, как и для упругопластиче-

ских границ, обозначают принадлежность внутренней и внешней части шара соот-

ветственно. 
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Запишем систему уравнений, соответствующую условиям, приведенным 

выше, для случая, когда в теле присутствуют все 7 зон, дополнив ее выражениями 

для остаточных деформаций: 
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 (3.15) 

где ( )s r и ( )s r


 – функции, обратные функциям ( )b t  и ( )b t


 по аналогии с (2.41). 

Стоит заметить, исходя из вида констант интегрирования (3.8)–(3.14), что в 

системе (3.15) в правых частях уравнений для остаточных деформаций содержится 

интеграл от их величины. Аналогично [82] будет производить вычисление данных 

интегралов по методу трапеций [103, с. 164]: 
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(3.16) 

где i  и 1i +  – индексы текущего (известного) и следующего (искомого) состояния 

соответственно. 

В качестве начального ( 0i = ) положения границ b  и b


 при ut  и 
ut


 рассмат-

риваются внутренняя и внешняя поверхности шара, а границы c  и c


 не изменяют 

своего положения вплоть до соответствующих моментов возникновения зон по-

вторной пластичности rt  и 
rt


. Таким образом, система (3.15) вместе с 
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интегралами (3.16) численно описывает процесс движения упругопластических 

границ в теле. 

В моменты времени dt  границы a  и b  достигают своего предельного поло-

жения ( ) ( )d da t b t b= =  и ( ) ( )d da t b t b= =


, и происходит вырождение областей 

пластического течения. Это может произойти как до, так и после возникновения 

областей повторного пластического течения в зависимости от свойств материала и 

параметров нагрева. В данном случае необходимо сделать соответствующую под-

становку в систему (3.15). 

Резюмируя приведенные выше рассуждения, можно записать алгоритм, поз-

воляющий определить последовательность процессов при эволюции областей об-

ратимого и необратимого деформирования: 

1. Пусть тело в текущий момент времени тело находится в состоянии iP  

(например, E ) в соответствии с рисунком 18. 

2. На следующем этапе тело может перейти из состояния iP  в любое из его 

дочерних состояний ijS  (для 0P E=  возможен переход в состояния 01S PE=  и 

02S EP= ). Поэтому для каждого из состояний ijS  определяется момент времени ijt  

(например, 01 12 ct =  и 02 3 ct = ), в который данное состояние наступит (т. е. выпол-

нится соответствующее ему условие на поверхности). 

3. Из всех возможных ijS  реализуется то iS  , для которого it   является 

наименьшим из ijt  (т. е. из 01S PE=  и 02S EP=  реализуется iS EP = , поскольку 

02 01t t ). 

4. Реализованное состояние iS   становится 1iP+ , и процесс повторяется, 

начиная с шага 1 до реализации конечного состояния (при возможности существо-

вания всех зон – до состояния RUEUR


  ). 

Как и в случае для сплошного шара, после полного нагрева тела температур-

ный градиент в нем становится равным нулю, и процесс деформирования заверша-

ется. При этом упругопластические границы c и c

 занимают предельные 
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положений с  и c


, а в областях 1R r c    и 1c r R  


 фиксируется уровень накоп-

ленных деформаций 
p

re . 

Для краткости далее будем использовать форму записи в виде кусочной 

функции для остаточных деформаций во всем теле: 
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 (3.17) 

По аналогии с разделом 2.2 рассмотрим процесс полного остывания шара. 

Выражения для остаточных напряжений и перемещений, строго говоря, известны 

и совпадают с (3.11) или (3.12) с точностью до нижней границы интегрирования и 

констант, определяемых из условия свободных внутренней и внешней поверхно-

стей шара: 
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 (3.18) 

Предельные переходы от рассматриваемой реологической модели к более 

простым проводится так же, как и для сплошного шара, причем случай 0c = =  

приводит к результатам [82]. Если же приравнять внутренние упругопластические 

границы внутреннему радиусу и устремить его к нулю 1 0a b c R= = = → , в резуль-

тате в точности будет получено решение задачи о сплошном шаре. 

В качестве демонстрации рассмотрим тело со следующими свойствами: 

2 141,172 10  м с− − =  , 
8

0 2,0 10  Паk =  , 109,2 10  Па =  , 104,3 10  Па =  , 

111,2 10  Паc =  , 101,0 10  Па с=   , 70,6 = . Кроме того, зададимся размером шара 

и параметрами его нагрева: 1 0,025 мR = , 2 0,225 мR = , 
38,5 10m

− =  , 10,1 сx −= . 
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Для заданного набора величин реализуется процесс деформирования, обозначен-

ный на рисунке 20. 

 

Рисунок 20 – Реализованная траектория развития областей в полом шаре 

В таблице 4 приведены значения ключевых моментов времени в ходе про-

цесса деформирования вместе с величинами относительного отклонения данных 

величин друг от друга. Стоит также обратить внимание на тот факт, что в отличии 

от случая сплошного шара (таблица 1), когда моменты возникновения и вырожде-

ния областей в теле и положение упругопластических границ для упругопластиче-

ского и упрочняющегося упругопластического материалов совпадают (стол-

бец c i− ), в полом шаре для указанных моделей совпал только момент возникно-

вения области пластического течения на внешней поверхности. 
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Таблица 4 – Значения характерных моментов времени 

Величина 
Модель среды Относительное отклонение, % 

i  c   c  c i−  c−  i−  c c−  c i−  

pt


, с 3,244 3,244 3,418 3,312 0,000 3,101 5,364 2,096 2,096 

pt , с 17,19 13,82 17,28 13,87 19,62 19,70 0,510 0,410 19,29 

ut


, с 18,52 18,51 18,69 18,58 0,022 0,594 0,940 0,362 0,340 

ut , с 37,93 37,99 38,19 38,07 0,161 0,309 0,683 0,211 0,372 

dt , с 40,24 41,75 40,40 41,82 3,765 3,525 0,390 0,158 3,929 

dt


, с 43,47 43,43 43,64 43,49 0,090 0,332 0,398 0,154 0,064 

rt


, с 57,67 57,66 57,84 57,73 0,003 0,190 0,305 0,118 0,114 

rt , с 121,8 115,9 122,0 116,0 4,860 4,928 0,123 0,052 4,811 

с  0,013 0,015 0,013 0,018 17,50 44,24 0,005 22,76 44,25 

b  0,023 0,031 0,023 0,032 36,73 40,64 0,007 2,867 40,65 

b


 0,657 0,657 0,657 0,657 0,078 0,086 0,001 0,009 0,087 

c


 0,810 0,810 0,810 0,810 0,004 0,001 0,001 0,003 0,002 

На рисунке 21 представлены распределения радиальной и окружной компо-

нент напряжений в шаре для всех моделей сред в следующие моменты времени: 

− (a) – момент возникновения внешней области пластического течения; 

− (b) – момент возникновения внутренней области пластического течения; 

− (c) – момент возникновения внешней зоны разгрузки; 

− (d) – момент возникновения внутренней зоны разгрузки; 

− (e) – момент вырождения внутренней области пластического течения; 

− (f) – момент вырождения внешней области пластического течения; 

− (g) – момент возникновения внешней области повторного пластического 

течения; 

− (h) – момент возникновения внутренней области повторного пластиче-

ского течения. 

Анализ полученных данных показал, что, как и для случая сплошного шара, 

влияние вязкости на величину напряжений в теле быстро уменьшается со 
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временем. В тоже же время упрочняющийся механизм деформирования оказывает 

на них существенное влияние. 



86 

 



87 

 



88 

 

 

(a) – момент pt


; (b) – момент pt ; (c) – момент ut


; (d) – момент ut ; 

(e) – момент dt ; (f) – момент dt


; (g) – момент rt

; (h) – момент rt  

Рисунок 21 – Распределение безразмерных напряжений 
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Как и в случае сплошного шара, анализ величины остаточных напряжений 

(рисунке 22) и остаточных перемещений (рисунок 23) показал, что изменение па-

раметра вязкости при осуществлении цикла «нагревание-охлаждение» не оказы-

вает влияния на напряженно-деформированное состояние, в то время как введение 

в рассмотрение упрочнения приводит к существенному изменению результатов (в 

приведенном примере видно, что остаточные напряжения отличаются более, чем в 

2 раза, а для остаточных перемещений в некоторых областях тела разница значений 

составляет более 4 раз). 

 

Рисунок 22 – Распределение безразмерных остаточных напряжений 
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Рисунок 23 – Распределение безразмерных остаточных перемещений 

Движение упругопластических границ во внутренней и внешней частях шара 

приведено на рисунке 24. Эти результаты подтверждают ранее сделанные наблю-

дения. Учет вязких деформаций практически не влияет на положение упругопла-

стических границ. В свою очередь, рассмотрение упрочнения материала приводит 

к увеличению глубины проникания областей пластического и повторного пласти-

ческого течения в наиболее удаленной от поверхности нагрева части шара. Данный 

факт полностью согласуется с результатами, представленными в таблице 4. 
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(a) – внутренняя части шара, (b) – внешняя часть шара 

Рисунок 24 – Безразмерная координата упругопластических границ 
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3.3 Численное моделирование 

Далее, с целью верификации полученного аналитического решения выпол-

ним численное моделирование поставленной задачи. Как и в разделе 2.3, рассмот-

рим модель кинематического упрочнения (2.53), (2.56) и экспоненциального вяз-

кого упрочнения (2.54)–(2.55). 

Геометрическая модель для случая полого шара представляет собой плоский 

кольцевой сектор 90° диаметрального сечения шара. Один из его радиусов может 

быть определен в модели в качестве оси вращения, а на втором дополнительно за-

дается условие симметрии. На рисунке 25 приведена применяемая конечно-эле-

ментная модель, на которой зеленым обозначена ось вращения, желтым – ребро, 

являющееся осью симметрии, красным – дуга, на которой задаются температурные 

граничные условия. 

 

Рисунок 25 – Расчетная модель 

Как и прежде, процесс верификации результатов будет разделен на два этапа. 
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Для случая полого шара выражение (2.57) среднего интегрального значения 

температуры принимает вид 

 ( ) ( )
2

12 1

1
,

R

R

T t T r t dr
R R

=
−  . (3.19) 

График наложения перечисленных величин, полученных аналитическим (с 

верхним индексом А ) и численным (с верхним индексом Ч ) путем, представлен 

на рисунке 26. 

 

1 – ( )АT t ; 2 – ( )ЧT t ; 3 – ( )0,АT t ; 4 – ( )0,ЧT t  

Рисунок 26 – Распределение безразмерной температуры 

Анализ графических зависимостей позволяет установить, что полученные 

аналитические выражения в достаточной мере адекватно описывают процесс 

нагрева тела. 

При аналитическом решении задачи механики деформируемого твердого 

тела были определены значения моментов времени возникновения и вырождения 

областей с различающимися реологическими свойствами, а также предельные по-

ложения упругопластических границ. Аналогичные величины были определены в 
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ходе вычислительного эксперимента. Данные результаты вместе с относительным 

отклонением представлены в сравнительной таблице 5. 

Таблица 5 – Сравнение результатов аналитического решения и численного 

моделирования 

Величина 
Аналитическое 

решение 

Вычислительный 

эксперимент 
Отклонение, % 

pt


, с 3,312 3,28 0,97 

pt , с 13,87 14,1 1,64 

ut


, с 18,58 18,5 0,43 

ut , с 38,07 38,1 0,07 

dt , с 41,82 41,6 0,53 

dt


, с 43,49 43,4 0,22 

rt

, с 57,73 58,0 0,46 

rt , с 116,0 118,3 1,97 

с  0,0184 0,0187 1,63 

b  0,0323 0,0317 1,86 

b


 0,6572 0,6518 0,82 

c


 0,8103 0,8159 0,69 

Величина относительного отклонения полученных результатов по времени и 

предельным положениям границ во внешней области шара друг от друга составляет 

менее 2 %, что свидетельствует о корректности применяемых моделей. 

На рисунках 27–28 изображены графики безразмерных радиальной и окруж-

ной компоненты напряжений от безразмерного радиуса для всех характерных мо-

ментов времени, а также безразмерных остаточных напряжений после остывания 

тела. Полученные зависимости отражают, что аналитическое решение описывает 

напряженно-деформированное состояние шара с достаточной степенью достовер-

ности. 
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1 – 
А

r ; 2 – 
Ч

r ; 3 – А

 ; 4 – Ч

 ; 

(a) – момент pt


; (b) – момент pt ; (c) – момент ut


; (d) – момент ut ; 

(e) – момент dt ; (f) – момент dt


; (g) – момент rt

; (h) – момент rt  
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Рисунок 27 – Распределение безразмерных напряжений 

 

1 – 
А

r ; 2 – 
Ч

r ; 3 – А

 ; 4 – Ч

 ; 

Рисунок 28 – Распределение безразмерных остаточных напряжений 

Таким образом, было сопоставлено аналитическое решение задачи, приве-

денное в разделах 3.1–3.2, и проведенный вычислительный эксперимент для ана-

логичной постановки с применением моделей Шабоша и экспоненциального вяз-

кого упрочнения. Анализ полученных результатов позволил сделать вывод об их 

сходимости относительно друг друга, а также необходимости использования ма-

лого шага дискретизации по времени в ожидаемые моменты существования обла-

сти пластического течения во внутренней области шара. 

3.4 Сходимость функциональных рядов и оценка остаточного члена ряда 

Как и в разделах 2.1–2.2, в разделах 3.1–3.2 решения были получены в пред-

положении о выполнении условий применимости формулы Грина [92, c. 123]. 
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Данный факт требует дополнительной проверки сходимости полученных функци-

ональных рядов. 

Докажем равномерную сходимость функционального ряда (3.6), определяю-

щего распределение безразмерной температуры в теле. Выполним оценку сверху 

его членов ( ), , 1nu t n   по абсолютной величине: 
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−  (3.20) 

Повторяя рассуждения (2.60)–(2.62), можно показать, что все множители в 

правой части (3.20) являются действительными конечными числами. Поэтому 

можно временно исключить из рассмотрения первые 0 1n −  членов ряда, где 0n  вы-

брано таким образом, чтобы выполнялось неравенство 

2

2 1

0n x
R R

 
  −  

− 
. При 

этом сумма конечного числа отброшенных членов ряда, которые являются конеч-

ными числами, также будет конечна. Тогда можно оценить правую часть в (3.20): 
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 (3.21) 

Из вышеизложенного следует, что члены исходного функционального ряда, 

начиная с некоторого 0n  могут быть промажорированы числовым рядом 
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Воспользуемся интегральным признаком Коши–Маклорена [99, с. 26] для 

доказательства сходимости ряда na . Введем замену вида  

 
2 1R R x−

 =
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и вычислим несобственный интеграл 
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Заметим, что собственные значения n  принадлежат от-

резку ( )
Pi Pi

Pi 1 , Pi
2 2
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, т. е. 
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, (3.23) 

где  0,1  – некоторая точка. Тогда 
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 , (3.24) 

где 0  – собственное значение, соответствующее номеру 0n . 
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При выборе номера 0n  было задано условие 0 0 −   . Тогда натуральный 

логарифм в (3.24) существует, конечен и принимает значение больше единицы. 

Следовательно,  \I + +  как произведение положительный конечных вели-

чин, т.е. несобственный интеграл I  сходится. 

Таким образом, можно сделать заключение, что согласно интегральному при-

знаку Коши–Маклорена сходится мажорантный ряд, и как следствие, равномерно 

сходится исходный функциональный ряд согласно мажорантному признаку Вейер-

штрасса [99, с. 86]. Кроме того, данный функциональный ряд достаточное количе-

ство раз дифференцируем и интегрируем [99]. 

Подводя итог приведенных рассуждений, можно утверждать, что доказана 

равномерная сходимость рассматриваемого функционального ряда для темпера-

туры и, соответственно, применимость формулы Грина при решении задачи тепло-

проводности. 

Проведем оценку остаточного члена функционального ряда. Пусть nr  – оста-

ток мажорантного числового ряда, ns  – остаток исходного функционального ряда. 

Тогда 

 ( ) ( ) ( )
0 0 0

, , ,n n n n n n n

n n n n n n

u t a r a u t u t s
+ + +

= = =

   =     =   . (3.25) 

Следствием признака интегральной сходимости Коши–Маклорена [99, с. 26] 

является оценка остатка ряда. Наложим на него дополнительное требование о 

непревышении некоторой величины 0   

 nr I   .  

В (3.22) последняя оценка, получаемая при отбрасывании множителя e
tx−
, 

дает излишне завышенные значения. Поэтому далее будет рассматривать усилен-

ное требование, что не противоречит предыдущим рассуждениям: 

 e e tx xt

nr I− −   . (3.26) 

Подберем такой 0 , чтобы выполнялось условие (3.26): 
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С учетом (3.23) перейдем в (3.27) от собственных значений к индексам 
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Оценка (3.28) полностью согласуется с выбором номера 0n . 

Ранее отмечалось, что выражения для напряжений, перемещений и деформа-

ций в различных областях шара в общем виде являются линейными комбинациями 

величин (2.69), т. е. записываются в виде (2.72). 

С учетом оценки остаточного члена ряда 
nr  (3.27) подберем такое 0n , чтобы 

выполнялось условие (2.72) 
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Пусть с некоторого момента времени  t  справедливо, что e 0xt− → , 

2 1 0e

n x t
R R

  
−  −   −   → . Тогда из (3.20) следует, что для всех членов ряда ( ),nu t , т. е. 

при 1n  , выполняется соотношение ( ), 0nu t → . Таким образом, все члены ис-

ходного ряда, начиная с 1n  , становятся много меньше нулевого члена, т. е. 

можно перейти к рассмотрению единственного члена ряда. 

Количественная оценка остатка применяемых рядов при различных   и iD  

приведена на рисунке 29. Обе оси графика построены в логарифмических коорди-

натах. При прочих равных условиях увеличение значения комплекса   (например, 
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за счет увеличения скорости нагрева) влечет за собой увеличение необходимого 

количества членов ряда для достижения той же точности вычислений. 

 

Рисунок 29 – Оценка остаточного члена ряда в момент 0t =  

На рисунке 30 представлена зависимость необходимого количества (3.29) 

членов функционального ряда от текущего момента времени для различных значе-

ний требуемой точности вычислений   и комплекса  . Анализ полученных графи-

ческих результатов показал, что комплекс   является определяющим фактором для 

асимптотического количества членов ряда при t t . Увеличение требуемой точ-

ности вычислений приводит к увеличению рассматриваемого количества членов 

ряда 0n  только на отрезке  0,t t , а далее не оказывает на него влияния. 
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Рисунок 30 – Зависимость оценки необходимого количества членов ряда от 

времени 

Нетрудно видеть, данные графические зависимости 29 и 30 практически в 

точности повторяют зависимости, изображенные на рисунках 11 и 12. 

Таким образом, была доказана равномерная сходимость функциональных ря-

дов, применяемых при определении напряженно-деформированного в задаче тер-

модеформирования полого шара, выполненного из упрочняющегося упруговязко-

пластического материала, вместе с их частными производными, что подтверждает 

выполнения условий применимости формулы Грина и, как следствие, корректность 

полученного решения. Кроме того, проведена оценка остаточных членов указан-

ных рядов, и получено выражение для определения количества членов ряда, доста-

точного для вычислений с заданной точностью. 
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3.5 Выводы по главе 3 

В данной главе был рассмотрен процесс термодеформирования упрочняюще-

гося упруговязкопластического полого шара и были получены выражения для 

напряжений, деформаций и перемещений во всех областях тела. Установлено, что 

в зависимости от размеров тела, физико-механических свойств материала, из кото-

рого оно изготовлено, и скорости процесса нагревания возможные не только коли-

чественные изменения в напряженно-деформированном состоянии: увеличение 

или уменьшение величины напряжений, глубины проникания отдельных зон или 

характерных моментов времени – но и качественные преобразования: например, 

изменение последовательности возникновения и вырождения зон или отсутствие 

некоторых из этих процессов. Совершены предельные переходы к моделям упру-

гопластического, упрочняющегося упругопластического и упруговязкопластиче-

ского материалов, и выполнен сравнительный анализ указанных моделей сред. 

С целью верификации полученных аналитических результатов выполнено 

численное моделирование с применением моделей Шабоша и экспоненциального 

вязкого упрочнения, подтвердившее имеющиеся закономерности. Также доказана 

сходимость полученных функциональных рядов и, как следствие, выполнение 

условий применимости формулы Грина, и получены оценки остаточного члена 

ряда и необходимого количества членов функциональных рядов для проведения 

расчетов с заданной точностью. 
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Заключение 

В ходе работы над диссертационным исследованием были рассмотрены ос-

новные соотношения теории температурных напряжений упрочняющегося упруго-

вязкопластического тела совместно с начальными и граничными условиями. Был 

совершен переход к случаю сферической симметрии и получена замкнутая система 

уравнений. 

После построения математической модели был сформулирован обобщенный 

подход к определению напряженно-деформированного состояния сплошной 

среды, обладающей свойствами упрочнения и вязкости, под действием темпера-

туры. Для сплошного и полого шаров определены выражения, описывающие тем-

пературные напряжения с учетом упрочняющегося и вязкого механизмов дефор-

мирования при линейной и полиномиальной зависимости предела текучести от 

температуры, а также совершены предельные переходы к упрощенным моделям 

среды. Выполнен анализ численных значений характеристик процессов, представ-

ленных в графических и табличных материалах, для полученных моделей. 

Представлены результаты верификации полученных результатов путем про-

ведения вычислительного эксперимента методом конечных элементов, подтвер-

ждающие корректность рассматриваемых аналитических выражений, определяю-

щих напряженно-деформированное состояние тел. Доказана сходимость применя-

емых в работе функциональных рядов и дана оценка достаточного количества их 

членов, необходимых для выполнения расчетов с заданной точностью. 
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