ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ТУЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

На правах рукописи

Антонов Максим Александрович

Методы и системы управления многоконтурными объектами

Специальность:

2.3.1. Системный анализ, управление и обработка информации

Диссертация на соискание ученой степени кандидата технических наук

Научный руководитель:

д.т.н., профессор

Ларкин Е. В.

Тула – 2022

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1. СИСТЕМЫ УПРАВЛЕНИЯ МНОГОКОНТУРНЫМИ ОБЪЕТАМИ И ИХ	
ОСОБЕННОСТИ	10
1.0. Введение	10
1.1. Многоконтурные объекты	10
1.1.1. Структурные особенности многоконтурных объектов	10
1.2. Функциональные схемы многоконтурных объектов управления	16
1.2.1. Функциональная схема робота-курьера	16
1.2.2. Функциональная схема одноковшового экскаватора «Caterpillar»	18
1.2.3 Сенсорная система	20
1.2.4. Механическая система	21
1.2.5. Система управления	21
1.2.6. Общая информационная модель системы управления,	
на базе Фон-Неймановской ЭВМ	22
1.2.7. Общие свойства и характерные особенности	
цифровых систем управления	23
1.2.8. Стохастические свойства детерминированных алгоритмов	30
1.2.9 Ошибки дискретизации и шум полинга	31
1.3. Известные методы управления МО	34
1.4. К вопросу о моделирования цифровых систем управения	36
1.5. Выводы	37
2. МОДЕЛЬ СИЛОВОЙ ГИДРАВЛИЧЕСКОЙ СИСТЕМЫ	
ОДНОКОВШОВОГО ЭКСКАВАТОРА, КАК МНОГОКОНТУРНОГО	
ОБЪЕКТА ИЗМЕРЕНИЯ И УПРАВЛЕНИЯ	38
2.1. Математические модели гидроприводов	38
2.1.1. Линейный привод двустороннего действия	38
2.1.2. Гидропривод с объемным регулированием	44
2.1.3. Модель гидронасоса с силовым агрегатом	52

2.2. Структурные схемы компонентов силовой гидравлической системы	
одноковшового экскаватора	58
2.2.1. Построение структурной схемы линейного гидропривода	58
2.2.2. Построение структурной схемы гидравлического привода	с
объемным регулированием	62
2.2.3. Построение структурной схемы гидронасоса	64
2.3. Силовая гидросистема одноковшового экскаватора, к	ак
многоконтурный объект управления	66
2.4. Выводы	68
3. МЕТОДЫ ОЦЕНКИ ВРЕМЕННЫХ ЗАДЕРЖЕК, ВОЗНИКАЮЩИХ ПР	М
ИНТЕРПРЕТАЦИИ АЛГОРИТМОВ ЦИФРОВОЙ СИСТЕМОЙ	
УПРАВЛЕНИЯ	69
3.1 Определения стохастических характеристик полумарковского процесса	a 69
3.2. Временные характеристики полумарковских процессов	74
3.3 Метод прямого расчёта числовых характеристик	77
3.4. Метод последовательных упрощений полумарковского процесса	82
3.4.1. Структура упрощаемого процесса	82
3.4.2. Элементарные операции упрощения	84
3.3.3. Рекурсивная процедура	86
3.4.3. Время между транзакциями	89
3.5. Выводы	91
4. ТЕХНИЧЕСКАЯ РЕАЛИЗАЦИЯ ЦИФРОВОЙ СИСТЕМЫ УПРАВЛЕН	И
MO	92
4.1. Математическая модель обработки данных на ЭВМ	Фон
Неймановского типа	93
4.2. Оценка временных интервалов	94
4.3. Экспериментальное подтверждение заявленных	
теоретических положений	102
4.4. Буферизация данных	104
4.4.1 Модель буферизации данных	104

4.4.2 Оценка вероятности сбоя системы, вызванного	
переполнением буфера. Вычисление объёма буфера	
4.4.3. Определение математического ожидания времени	между
двумя последовательными транзакциями	
4.4.4. Алгоритм Монте-Карло для экспериментальной оценки	длинны
очереди	
4.5. Выводы	113
ЗАКЛЮЧЕНИЕ	115
СПИСОК ЛИТЕРАТУРЫ	118
ПРИЛОЖЕНИЕ А.	
АКТ ВНЕДРЕНИЯ НАУЧНЫХ РЕЗУЛЬТАТОВ В ПРОИЗВОДСТВО)
МНОГОЗВЕННОГО КАЧАЮЩЕГОСЯ УСТРОЙСТВА	
ПРИЛОЖЕНИЕ Б.	
АКТ ВНЕДРЕНИЯ НАУЧНЫХ РЕЗУЛЬТАТОВ В УЧЕБНЫЙ ПРОЦ	ECC 132

ВВЕДЕНИЕ

Актуальность проблемы. В настоящее время, в научно-технической сфере большое распространение получил класс объектов, управления и измерения, называемый многоконтурными объектами (МО).

Большой вклад в развитие принципов управления многоконтурными объектами внесли такие учёные, как: Емельянова Т. А., Медведев М.Ю., Перепелкин Е.А., Асанов А.З., Битюков В.К., Буков В.Н., Кудряшов В.С. и другие.

Учитывая опыт изученных научных работ, может быть сделан вывод, что наиболее удачно реализовать многоконтурное управление позволяют цифровые системы управления, которые чаще всего построены по принципу Фон-Неймановского компьютера, в связи с чем, в процессе функционирования таких систем могут возникать временные задержки, непосредственно влияющие на качество управления, на основании чего сделан вывод, что задачи разработки методов, алгоритмов и устройств, позволяющих реализовать управление MO, с учётом возникающих в процессе функционирования Фон-Неймановского компьютера временных задержек, являются *актуальными*.

Таким образом, *объектом исследования* является цифровая система управления многоконтурными объектами.

Предметом исследования являются временные и стохастические характеристики процесса управления многоконтурными объектами.

В диссертации использован подход к оценке временных задержек и вероятностных характеристик, основанный на *аналитических методах* математического моделирования. Математические модели, разработанные в рамках использованного подхода, базируются на теории управления, системном анализе, теории систем, теории сигналов, теории алгоритмов, теории полумарковских процессов.

Работа выполнена при содействии гранта Российского Фонда Фундаментальных Исследований АААА-А19-119100890031-3. *Цель работы* заключается в разработке методов снижения трудоемкости конструирования систем управления с цифровым регулятором в цепи обратной связи.

В соответствии с поставленной целью в диссертации решены следующие *задачи:*

1. Проведён системный анализ существующих многоконтурных объектов, как объектов управления, с целью выделения их характерных структурных особенностей.

2. Построена математическая модель, описывающая динамику систем, использующих в качестве силовых элементов системы гидропривода.

3. Разработан метод оценки задержек по времени, вносимых Фон-Неймановским контроллером, при интерпретации управляющего алгоритма.

4. Разработаны устройства буферизации данных в интерфейсе, позволяющие сокращать временные задержки на обмен данными в контурах управления.

Достоверность полученных теоретических результатов подтверждается корректным применением аналитических моделей и натурным и компьютерным моделированием.

Положения, выносимые на защиту, обладающие научной новизной.

1. Построена общая модель управления сложными многоконтурными объектами, учитывающая реальные свойства цифрового контроллера как физического прибора, вносящего задержку по времени в контурах управления.

2. Разработан метод оценки задержек по времени, вносимых контроллером при интерпретации управляющего алгоритма, основанный на прямом расчете математического ожидания времени по матрице математических ожиданий и стохастической матрице.

3. Разработана математическая модель, описывающая динамику системы цифрового управления силовой гидравлической системой многозвенного качающегося устройства, как многоконтурного объекта.

6

Теоретическая значимость работы заключается в том, что описан метод прямой оценки временных задержек, возникающих при интерпретации управляющего алгоритма Фон-Неймановским контроллером, основанный на прямом расчете математического ожидания времени по матрице математических ожиданий и стохастической матрице.

Практическая значимость работы заключается в снижении трудоемкости конструирования систем управления с цифровым регулятором в цепи обратной связи.

Реализация и внедрение результатов. Предложенные в диссертации положения внедрены в учебный процесс кафедры «Робототехника и автоматизация производства» в дисциплины: «Теория управления» направления 15.03.06 «Мехатроника и робототехника», «Цифровое управление технологическими машинами и оборудованием» направления 15.03.02 «Технологические машины и оборудование», «Приводы роботов и робототехнических систем» направления 15.03.06 «Мехатроника и робототехника», а также внедрены в процесс производства многозвенного качающегося устройства, компанией ООО «ЦЕНТРНАСОССЕРВИС».

Апробация работы. Основные положения диссертационной работы докладывались и получили положительную оценку на всероссийских и международных конференциях: Основные результаты работы докладывались на Международной конференции по роевому интеллекту ICSI 2018 (Шанхай, Китай, 2018), Международной конференции по роевому интеллекту ICSI 2019 (Чианг Май, Тайланд, 2019), Международной научно-технической конференции "Автоматизация" RusAutoCon-2019 (Сочи, Россия, 2019), Международной конференции по интерактивной коллаборативной робототехнике ICR-2020 (Санкт-Петербург, Россия, 2020), Международной конференции по роевому интеллекту ICSI 2020 (Белград, Сербия, 2020), XV МЕЖДУНАРОДНАЯ НАУЧНО-ТЕХНИЧЕСКАЯ КОНФЕРЕНЦИЯ «Оптико - электронные приборы и устройобработки распознавания образов И изображений», ства В системах РАСПОЗНАВАНИЕ — 2019 (Курск, Россия, 2019), XVI МЕЖДУНАРОДНАЯ НАУЧНО-ТЕХНИЧЕСКАЯ КОНФЕРЕНЦИЯ «Оптико - электронные приборы и устройства в системах распознавания образов и обработки изображений», РАСПОЗНАВАНИЕ — 2021 (Курск, Россия).

Публикации. По теме диссертации опубликовано 25 научных работ: 13 работ в рецензируемых научных журналах и изданиях, рекомендованных ВАК Минобрнауки РФ, 9 Scopus и 3 работы в прочих изданиях, общим объемом 12,5 печатных листов, авторский вклад 4,75 печатных листов.

Личный вклад автора. Личный вклад автора в диссертацию заключается в следующем.

1) Проведен системный анализ проблемы цифрового управления и сделан вывод о необходимости учета времени интерпретации управляющих алгоритмов контроллерами Фон Неймановского типа, включенными в цепь обратной связи.

 Построена общая модель управления сложными многоконтурными объектами, учитывающая реальные свойства цифрового контроллера как физического прибора.

3) Разработана математическая модель, описывающая динамику систем, использующих в качестве силовых элементов систем гидропривода.

4) Разработан метод оценки задержек по времени, вносимых контроллером, при интерпретации управляющего алгоритма

5) Разработаны устройства буферизации данных в интерфейсе, позволяющее сокращать время задержки на обмен данными в контурах управления.

6) Результаты теоретических исследований применены для конструирования системы цифрового управления исполнительным органом одноковшового экскаватора, с системой гидроприводов.

Автор диссертационной работы принимал непосредственное участии в проведении всех экспериментальных и теоретических исследований, апробации результатов исследования, подготовке докладов и публикаций по теме диссертации. Вся обработка и интерпретация полученных результатов выполнена лично автором.

Соответствие паспорту специальности. Согласно паспорту специальности 2.3. 1 – Системный анализ, управление и обработка информации, проблематика, рассмотренная в диссертации, соответствует пунктам 3, 9, 10 и 11 паспорта специальности.

Структура и объем работы. Работа состоит из введения, четырех глав, заключения, приложений и списка литературы, включающего 130 наименований. Диссертация содержит 132 страницы текста (включая 2 приложения) и поясняется 41 рисунком и 13 таблицами.

Области возможного использования. Результаты диссертационной работы могут использоваться в системах управления, системах высокой готовности, в оборонной промышленности.

1. СИСТЕМЫ УПРАВЛЕНИЯ МНОГОКОНТУРНЫМИ ОБЪЕТАМИ И ИХ ОСОБЕННОСТИ

1.0. Введение

В настоящее время в процесс логистики активно внедряется средства автоматизации, искусственный интеллект, нейронные сети и другие интеллектуальные программно-аппаратные средства робототехники. Это обусловлено ростом спроса на доставку различных грузов клиентам, в условии дефицита сотрудников служб доставки. Решение проблемы дефицита сотрудников служб доставки предложила отечественная компания «Yandex», которая провела испытания робота-курьера, в условиях недетерминированной городской среды. Проведённые испытания показали необходимость совершенствования способов управления сложными техническими объектами, представляющими собой транспортное средство (TC), оснащённое бортовым компьютером (БК), полукомплектом аппаратуры передачи данных (АПД), сенсорной и манипуляционной системами. Структура описанного технического объекта представляет собой множество контуров управления, функционирование которых необходимо согласовать по времени. Описанный объект может быть отнесён к классу многоконтурных объектов (MO).

1.1. Многоконтурные объекты

1.1.1. Структурные особенности многоконтурных объектов

Классификация МО довольно обширна и объединяет в себе широкое многообразие сфер жизнедеятельности человека, начиная с бытовой и заканчивая военной.

Ниже рассматриваются некоторые многоконтурные объекты и выделяются характерные особенности их структуры, как объектов управления.

Робот-курьер «*Ровер*» (рис.1.1), разработанный компанией «*Yandex*», представляет собой тележку на шести независимых мотор-колёсах, что позво-

ляет осуществлять разворот с минимальным радиусом. На борту роботакурьера располагается отсек для транспортируемого груза, бортовой компьютер и сенсорная система. Роботы-курьеры *«Ровер»* формируют рой и управляются дистанционно, из центрального пункта управления, с помощью интернет соединения и АПД.

Рисунок. 1.1. - Робот-курьер «Ровер»

К МО может быть также отнесены системы автоматизации зданий и производственных процессов. Так, известен патент на полезную модель «Система «умный дом» с интеллектуальным адаптивным входом/выходом», запатентованный ООО «Браво Моторс».

«Система «Умный дом» с интеллектуальным адаптивным входом/выходом», структурно состоит из сенсорной подсистемы, подсистемы исполнительных устройств, блока управления, модуля сопряжения блока управления с сенсорной подсистемой и подсистемой исполнительных устройств, канала связи с блоком управления высшего уровня и собственно блока управления высшего уровня, который представляет собой удалённый сервер [8].

Управляется система «Умного дома» удалённо, с помощью пульта управления, который представляет собой «гаджет», связанный по сети интернет с удалённым сервером, вырабатывающим глобальные задачи управления, которые, в свою очередь, передаются по каналу связи в блок управления и распределяются, с помощью модуля сопряжения, среди единиц оборудования, представляющего собой подсистему исполнительных устройств. Обратная связь каждого контура управления замыкается через соответствующий сенсор сенсорной подсистемы.

Электромобили *Tesla* (рис.1.2), производимые одноимённой корпорацией *Tesla*(США), представляют собой класс легковых электрических транспортных средств, оснащённых бортовой системой управления. Применение такого развитого комплекса программно-аппаратных средств позволяет не только автоматизировать привычные функции автомобилей, такие как круиз-контроль, климат-контроль, безопасность и прочее, но и впервые внедрить функции автопилота, объезда препятствий и другие функции, необходимые для обеспечения безопасности дорожного движения.

Рисунок 1.2. - Электромобиль Tesla

Структурно, электромобили *Tesla* довольно сильно походят на описанную выше систему автоматизации зданий. Так, автомобиль *Tesla* имеет канал связи, по сети интернет, с удалёнными серверами и спутниками, что позволяет прокладывать оптимальные маршруты, исходя из дорожных условий, блок управления, размещённый на борту транспортного средства, блоки сопряжения сенсорной и исполнительной подсистем с блоком управления, органы ручного управления, позволяющие собственно управлять электромобилем *Tesla*в ручном режиме. Стоит отметить, что средствами сенсорной подсистемы постоянно ведётся сбор информации о внешней среде, и в случае чрезвычайных ситуаций, которые могут привести к дорожно-транспортному происшествию, блок управления перехватывает управление у оператора, во избежание аварийной ситуации [9].

На текущий момент времени, в сельском хозяйстве получают распространение технологии «точечного земледелия» .Одной из компаний, предоставляющих услуги автоматизации сельского хозяйства, является фирма *Trimble* (США), поставляющая модульные, программно-аппаратные средства автоматизации сельскохозяйственной техники. Каталог компании *Trimble*включает средства автоматического вождения, дисплеи и курсоуказатели (рис.1.3), системы управления орудием, беспилотные летательные аппараты и прочее.

Рисунок 1.3. - Курсоуказатель фирмы Trimble

Собственно автоматизация сельскохозяйственной техники модульными средствами компании *Trimble* достигается их неразрушающим внедрением в конструкцию сельскохозяйственнойтехники. Различные комбинации поставляемого компанией модульного оборудования позволяет получить любую степень автоматизации сельскохозяйственных процессов.

Комбинация модульных программно-аппаратных средств компании *Trimble* происходит по типовому алгоритму и приводит к структурам систем, которые могут быть классифицированы, как MO.

Например, для автоматизации процесса распашки, компания *Trimble* предлагает типовое решение по автоматизации трактора [10], которое состоит во внедрении в его конструкцию подсистемы исполнительных устройств (при-

водов), подсистемы сенсорных устройств, блока навигации, блока управления, пульта управления и канала связи с пунктом управления. Наравне с электромобилями компании *Tesla*, автоматизация сельскохозяйственной техники программно-аппаратными средствами компании *Trimble* предполагает дублирование автоматического управления ручным управлением, реализующимся с помощью стандартных органов управления сельскохозяйственной техникой.

Многофункциональный мобильный робот легкого класса «Варан» (рис. 1.4) предназначен для ведения визуальной разведки, поиска и первичного диагностирования взрывных устройств и других предметов с помощью телевизионных камер и специального навесного оборудования [11].

Мобильный колесный робот может проводить дистанционное обезвреживание взрывных устройств, их загрузку в специальные контейнеры для эвакуации.

Структурно, мобильный робот *«Варан»* устроен следующим образом: на подвижной платформе размещена подсистема сенсоров, подсистема бортового оборудования, бортовая система управления, блок сопряжения бортовой системы управления с подсистемами сенсоров и бортового оборудования, канала связи с пунктом управления, в котором располагается система управления высшего уровня и оператор.

Рисунок. - 1.4. Робот «Варан»

Система гидравлических приводов, устанавливаемая на экскаваторы, выпускаемые фирмой «*Caterpillar*» (рис. 1.5) позволяет эффективно управлять сила-моментными характеристиками, формируемыми каждым из множества гидроприводов [12].

Рисунок 1.5 - Одноковшовый экскаватор, оснащённый гидравлическим приводом с объёмным управлением

Структурно, гидравлическая система состоит из силового агрегата, представляющего собой электрический двигатель или двигатель внутреннего сгорания, объёмный гидравлический насос, множество гидравлических приводов, гидравлических линий, соединяющих гидравлический насос с гидроприводами, гидравлическая арматура, позволяющая коммутировать потоки рабочей жидкости, сенсорную подсистему и собственно цифровую систему управления, построенную по иерархическому принципу, канал связи пульта управления с цифровой системой управления, собственно пульт управления.

Рассмотренные образцы МО выделить их основные структурные особенности, существенные с точки зрения исследования и проектирования их системы управления. Таким образом, МО и его система управления должны иметь следующие составляющие: исполнительную подсистему, позволяющую выполнять команды управления и взаимодействовать с внешней средой;

сенсорную подсистему, позволяющую осуществлять сбор, и первичную обработку информации о параметрах объекта управления и внешней среды;

блок управления, позволяющий организовать алгоритмы управления и обработки информации;

блок сопряжения, с помощью которого осуществляется взаимодействие сенсорной и исполнительной подсистем с блоком управления;

канал связи, осуществляющий связь блока управления, с системой управления высшего уровня;

систему управления высшего уровня, включающую в себя блок управления, более высокого уровня, интерфейс взаимодействия с оператором.

1.2. Функциональные схемы многоконтурных объектов управления

Проведённый выше анализ позволяет построить обобщённые функциональные схемы МО. Для более глубокого понимания структурных особенностей МО, предлагается рассмотреть несколько функциональных схем.

1.2.1. Функциональная схема робота-курьера

На рис. 1.6 приведена функциональная схема робота-курьера, включающая собственно робота-курьера и пункт управления.

В пункте управления располагается оператор, который через средства ввода данных (клавиатура, кнопки, джойстик, мышь) вводит команды в ЭВМ. Введенные команды передаются через АПД в бортовой компьютер роботакурьера, а от бортового компьютера оператор получает, через средства вывода данных информацию о состоянии робота-курьера. Собственно робот-курьер включает:

полукомплект АПД, необходимый для связи с пунктом управления;

16

бортовой компьютер, обеспечивающий обработку поступающих данных и связь через бортовой полукомплект аппаратуры передачи данных пунктом управления;

манипуляционную систему, обеспечивающую воздействие на среду и перемещаемый груз;

сенсорную систему, обеспечивающую сбор данных о состоянии среды функционирования и состоянии собственно робота-курьера.

Рисунок 1.6 - Обобщенная функциональная схема комплекса Управления робота-курьера

Кроме того, в робот-курьер может опционально входить энергетическая установка, которая обеспечивает энергией все активные узлы и блоки оборудования, размещённого на его борту. В качестве энергетической установки может

использоваться двигатель внутреннего сгорания, оснащённый генератором, блоком заряда аккумулятора и собственно аккумулятором или электрический аккумулятор. [13]

В пункте управления оператор, при взаимодействии с ЭВМ, генерирует серию команд, обеспечивающих целенаправленное функционирование роботакурьера. Оператор, в зависимости от решаемой тактической задачи, текущего состояния робота-курьера и навыков по управлению подобными системами, вводит в ЭВМ, расположенную в пункте управления, очередную команду. Введенная команда кодируется с помощью ЭВМ и передается через систему связи собственно в блок управления робота-курьера.

Принятое сообщение, поступает в бортовой компьютер, и декодируется. При необходимости передача/прием команды производится повторно для повышения надежности управления. В соответствии с поступившей командой, заложенным в бортовом компьютере алгоритмом выбирается узел, блок или механизм, который является текущим объектом управления и необходимым для решения поставленной тактической задачи. Для текущего объекта управления определяется его текущее состояние и выбирается команда, которая обеспечит его переход в следующее состояние. Команда кодируется, и код через контроллер вводится в исполнительный блок и/или механизм. Исполнение команды контролируется сенсором, данные с которого через интерфейс вводятся в бортовой компьютер робота-курьера, кодируются и через систему связи передаются в ЭВМ пункта управления. На пункте управления данные, поступившие от робота-курьера, декодируются, формируется сообщение оператору и через интерфейс отображаются на экране монитора. Таким образом, замыкается обратная связь, контролирующая исполнение очередной команды.

1.2.2. Функциональная схема одноковшового экскаватора «Caterpillar»

На рис.1.7 показана функциональная схема экскаватора «*Caterpillar*», как объекта управления.

18

Одноковшовый экскаватор «*Caterpillar*», функциональная схема которого приведена на рис.1.7 управляется из пункта управления, аналогичному по структуре технических средств с пунктом управления робота-курьера (рис.1.6). Оператор вводит, с помощью средств ввода команды управления в ЭВМ пункта управления, контролирует поступающие данные о состоянии одноковшового экскаватора «*Caterpillar*» с помощью средств вывода, а обмен информацией с бортовым компьютером экскаватора осуществляется с помощью канала связи, который может представлять собой, как радиоканал так и кабельную бортовую сеть экскаватора, если пункт управления находится на его борту.

Рисунок 1.7 – Функциональная схема одноковшового экскаватора «Caterpillar»

Получая команду управления, бортовой компьютера экскаватора осуществляет её декодирование, затем осуществляет считывание информацию о текущем состоянии механической подсистемы экскаватора, в которую входят гидроприводы, силовой агрегат и гидравлический насос. Информация о текущем состоянии механической подсистемы формируется с помощью сенсорной подсистемы, которая состоит из множества различный сенсоров, позволяющих сформировать вектор информации, характеризующей текущее состояние.

Бортовой компьютер выполняет расчёт управляющих воздействий, с помощью заложенного в него алгоритма и генерирует управляющие сигналы для соответствующей единицы оборудования механической подсистемы, тем самым переводя её в требуемое командой управления состояние, при этом используя информацию о текущем состоянии механической подсистемы и информацию, заложенную в команду управления оператором.

Таким образом, рассмотрение показанных функциональных схем даёт понимание того, что структура иерархических систем управления многоконтурными объектами довольно схожа, несмотря на специфику их функционирования.

1.2.3 Сенсорная система

Сенсорные подсистемы многоконтурных объектов состоят из сенсоров, которые могут быть разделены по виду решаемых задач на три группы:

1) системы, которые определяют общую картину окружающей среды с последующим обособлением различных объектов;

2) системы, которые определяют физико-химические свойства внешней среды и объектов в ее составе;

3) системы, которые определяют координаты местоположения, включая координаты относительно объектов внешней среды, и параметры движения.

Первая группа включает в себя системы технического зрения и локаторы различного типа, вторая группа — сенсоры для измерения геометрических параметров, химического состава, плотности, температуры, оптических свойств и

тому подобных. В третью группу входят сенсоры для определения географических координат в пространстве, измерители угловых координат, перемещения и скорости, в том числе и относительно отдельных объектов внешней среды с фиксацией соприкосновения с ними.

1.2.4. Механическая система

Механическая система предназначена для влияния на внешнюю среду, через целенаправленное воздействие на неё с помощью различных исполнительных устройств, а также для реализации собственно команд управления.

К таким исполнительным устройствам могут быть отнесены движители, позволяющие перемещаться многоконтурному объекту в пространстве, различные манипуляторы, осуществляющие захват и перемещение транспортируемых грузов, рулевые машинки, пневматические и гидравлические клапаны и так далее.

Таким образом, механическая система представляет собой набор технических средств, каждое из которых, в свою очередь, являются объектом управления более низкого иерархического уровня, по отношению к многоконтурному объекту, а методы управления этими техническими средствами широко известны и формализованы.

1.2.5. Система управления

Как следует из приведенной на рис. 1.6 и рис.1.7 функциональных схем, выполнение задач управления реализуется с помощью бортового компьютера.

Бортовой компьютер – это комплекс программно-аппаратных средств, обеспечивающий формирование и выдачу управляющих воздействий на механическую систему, в соответствии с задаваемыми целями и с учетом состояния внешней среды [14, 15, 16]. Бортовой компьютер выполняет следующие функции[17, 18, 19]:

обработка сигналов о текущем состоянии многоконтурного объекта и внешней среде, которые формируются сенсорной системой;

формирование сообщений о состоянии многоконтурного объекта с целью передачи телеметрической информации в пункт управления через канал связи;

получение через канал связи команд управления от оператора, их дешифрация и формирование сигналов механической системе, которые необходимы для решения текущих задач управления;

замыкание локальных обратных связей при управлении механической системой;

проведение контроля состояния систем многоконтурного объекта в ходе регламентных работ;

контроль ресурса энергетической установки для выдачи сигнала о своевременном прекращении выполнения поставленных задач;

ведение протокола состояния систем многоконтурного объекта для своевременной организации регламентных и ремонтных работ;

обеспечение отказоустойчивости и реконфигурации блоков и узлов при отказах и сбоях аппаратуры, внешних и внутренних помехах.

Бортовой компьютер построен на основе ЭВМ, которая получает информацию от сенсорной подсистемы и на её основе, с помощью заложенных в ней алгоритмов управления механической системой, формирует управляющие воздействия для элементарных автоматов нижнего уровня иерархии.

1.2.6. Общая информационная модель системы управления, на базе Фон-Неймановской ЭВМ

Одним из основных при функционировании МО является этап обработки информации цифровой системой управления, в результате чего на основании информации, полученной от сенсорной подсистемы, формируется сообщение, предъявляемое оператору на экране дисплея [20]. Независимо от типа применяемой ЭВМ, её функционирование осуществляется по некоторой программе, под которой понимается точное предписание Γ пошаговой обработки данных, в результате которой из произвольной совокупности исходных данных *D* формиру-

ется результат R, полностью определяемый программой Γ и исходными данными D

$$R = R(\Gamma, D) = (R_1, ..., R_m, ..., R_M), \qquad (1.2.1)$$

где

$$D = (d_1, ..., d_n, ..., d_N)$$
(1.2.2)

- результат предварительной обработки на аппаратном уровне вектора сигналов $s(t) = (s_1(t), ..., s_i(t), ..., s_N(t)) = (s_A(t) + s_D(t))$, поступающих с сенсорной системы MO; $(R_1, ..., R_m, ..., R_M)$ - вектор результата обработки.

Программа цифровой системы управления МО, с одной стороны, формирует из вектора исходных данных D другую совокупность данных R, интерпретируемую как решение задачи из некоторого класса однотипных задач, а с другой стороны является одним из основных факторов, определяющих информационные и временные характеристики бортового вычислителя. В частности, обработка информации не может не сказаться на информативности данных, получаемых на выходе цифровой системы управления, например, на таком объективном показателе информативности, как энтропия.

1.2.7. Общие свойства и характерные особенности цифровых систем управления

Под программой функционирования в дальнейшем будет подразумеваться множество

$$\Gamma = (G, G_{\text{int}}),$$

где G - основная программа обработки сигналов сенсорной системы, которая ниже будет называться *алгоритмом*; G_{int} - программа обработки прерываний, ниже называемая *алгоритмом обработки прерываний*.

Под алгоритмом G в дальнейшем будет подразумеваться упорядоченное множество [21, 22]

$$G = [A, Z],$$

где $A = \{a_{1(a)}, ..., a_{i(a)}, ..., a_{J(a)}\}$ – не пустое множество операторов; $Z = \{[a_{i(a)}, a_{j(a)}], ..., [a_{k(a)}, a_{l(a)}]\}$ - непустое множество переходов между операторами.

Для каждого оператора $a_{i(a)}$ может быть определено множество

$$O(a_{i(a)}) = \{a_{1[O,i(a)]}, ..., a_{i[O,i(a)]}, ..., a_{J[O,i(a)]}\} \subset A$$

операторов, в которые вычислительный процесс попадает из $a_{i(a)}$ и множество

$$I(a_{i(a)}) = \{a_{1[I,i(a)]}, ..., a_{i[I,i(a)]}, ..., a_{J[I,i(a)]}\} \subset A$$

операторов, из которых вычислительный процесс попадает в $a_{i(a)}$. Очевидно, что структура алгоритма, т.е. взаимосвязь между операторами отражается одним из перечисленных способов:

$$G = [A, Z], \{A, O(A)\}$$
или $\{A, I(A)\}$

где

$$O(A) = \{O(a_{1(a)}), ..., O(a_{i(a)}), ..., O(a_{J(a)})\}$$

$$I(A) = \{I(a_{1(a)}), ..., I(a_{i(a)}), ..., I(a_{J(a)})\}.$$

Без доказательства могут быть приняты следующие утверждения.

Утверждение 3.1. Множество *А* операторов алгоритма *G* непусто, т.е. *A* = $\{a_{1(a)}, ..., a_{i(a)}, ..., a_{J(a)}\} \neq \emptyset$, где \emptyset - пустое множество.

Утверждение 3.2. Множество Z переходов между операторами алгоритма непусто, т.е. $Z = \{[a_{i(a)}, a_{j(a)}], ..., [a_{k(a)}, a_{l(a)}]\} \neq \emptyset.$

В классической теории [23, 24, 25, 26, 27] рассматриваются алгоритмы, в которых из множества A операторов алгоритма G могут быть выделены подмножества $B = \{b_{1(b)}, ..., b_{i(b)}, ..., b_{J(b)}\} \subset A$ начальных и $E = \{e_{1(e)}, ..., e_{i(e)}, ..., e_{J(e)}\}$ $\subset A$ конечных операторов.

Начальным оператором алгоритма *G* является оператор инициализации вычислительного процесса. Конечным оператором алгоритма *G* является оператор завершения вычислительного процесса.

Утверждение 3.3. Процесс обработки информации в классическом алгоритме может начаться только в операторах подмножества *B*, а завершиться только в операторах подмножества *E*.

Утверждение 3.4. В множество $B = \{b_{1(b)}, ..., b_{i(b)}, ..., b_{J(b)}\} \subset A$ начальных операторов алгоритмов исследуемого класса входят те, и только те операторы,

для которых справедливо свойство

$$I(b_{i(b)}) = \emptyset, \ O(e_{i(e)}) \neq \emptyset, \ i(b) = 1(b), ..., J(b).$$

Утверждение 3.5. В множество $E = \{e_{1(e)}, ..., e_{i(e)}, ..., e_{J(e)}\} \subset A$ конечных операторов алгоритмов исследуемого класса входят те, и только те операторы, для которых справедливо свойство

$$O(e_{i(e)}) = \emptyset, I(e_{i(e)}) \neq \emptyset, i(e) = 1(e), ..., J(e).$$

Как объект моделирования, алгоритм *G* в классическом понимании обладает следующими особенностями.

1) Подмножества В и Е непусты.

Действительно, если $B = \emptyset$, то обработка информации в классическом алгоритме не может быть начата, если $E = \emptyset$, то она не может быть завершена в том смысле, что из исходного массива D, не может быть получен массив $R = R(G, D) = (R_1, ..., R_m, ..., R_M)$.

2) Пересечение подмножеств *B* и *E* есть пустое множество ($B \cap E = \emptyset$).

Действительно, согласно *утверждению 3.5*, в *Е* только те операторы, для которых выполняется условие $O(e_{i(e)}) = \emptyset$, а согласно свойству 3.4 операторов с указанными свойствами среди операторов, подмножества *B*, нет.

3) Минимально возможный алгоритм имеет вид $G = [\{b, e\}, \{[b, e]\}].$

Действительно, согласно первой особенности минимально возможный алгоритм может содержать непустое подмножество B с единственным оператором b и непустое множество E с единственным оператором e, причем в силу утверждения 3.2 между операторами b и e может существовать единственная связь, а в силу утверждений 3.4 и 3.5 связь имеет вид [b, e].

4) Число J(a) операторов алгоритма G конечно.

Справедливость свойства подтверждает тот факт, что максимальное количество операторов и структурных связей между ними ограничено сверху физическими возможностями реальных ЭВМ, в основном объемом запоминающего устройства для хранения программы.

5) Для операторов подмножества В определены вероятности начала в них

вычислительного процесса $q_{i(B)}$, для которых справедливо равенство

$$\sum_{i(B)=l(B)}^{J(B)} q_{i(b)} = 1.$$
(1.2.3)

Рассматриваемая особенность разрешает проблему наличия подмножества *B* начальных операторов, мощность которого $\mu(B) > 1$ (это следует из определения алгоритма и утверждения 3.4 и расходится с общепринятой интерпретацией операторов начала в классической теории алгоритмов [28, 29, 30], где допускаются существование единственного оператора такого типа). Операторы подмножества *B* могут быть интерпретированы как начальные операторы множества задач, решаемых на ЭВМ, или как различные точки входа в задачи при запуске, а вероятности $q_{i(B)}$ - как вероятности решения задач и/или запуска задач с каждой из точек входа при долговременной эксплуатации комплекса [31].

6) Любой оператор $c \subset A$ достижим из подмножества *B*.

Действительно, возможны два варианта существования оператора $c: c \in B$ и $c \in B$.

В первом случае оператор с достижим из В по определению.

Пусть во втором случае оператор *c* недостижим из *B*. Тогда существует некоторое подмножество $C = \{c_1, ..., c_{J(c)}\} \subset A$ операторов, определяемое по рекуррентным формулам:

$$c_{k-1} \in O(c_k) ..., c_0 \in O(c_1) = c,$$

получаемое за конечное число шагов K < J(a), недостижимое из подмножества *B*. По предположению, как в *C*, так и в *B*, можно попасть только в начале вычислительного процесса. Полученное противоречие и доказывает свойство 6.

7) Подмножество *Е* достижимо из любого оператора $c \in A$.

Доказательство свойства 7) аналогично доказательству свойства 6.

8) Из оператора $a_{i(a)}$ в операторы подмножества $O(a_{i(a)}) = \{a_{1[0,i(a)]}, ..., a_{i[0,i(a)]}\}$ вычислительный процесс попадает случайным образом. Каждый переход из $a_{i(a)}$ в $a_{i[0,i(a)]}$ для внешнего наблюдателя характеризуется вероят-

$$\sum_{i[O,i(a)]=1[O,i(a)]}^{J[O,i(a)]} p_{i(a),i[O,i(a)]} = \begin{cases} 1, & e c \pi u \, a_{i(a)} \not\subset E; \\ 0, & e c \pi u \, a_{i(a)} \subset E. \end{cases}$$
(1.2.4)

где J[O, i(a)] - мощность множества $O(a_{i(a)})$.

Стохастические свойства детерминированных алгоритмов вытекают из того факта, что данные, поступающие с выхода сенсорной системы, являются случайными [20, 21, 23, 32], и при принятии решения в местах ветвления алгоритмов все переходы при передаче управления составляют полную группу несовместных событий. При выполнении же вычислительного оператора переход к следующему за ним единственному оператору производится с вероятностью, равной единице. Вычислительный процесс завершается, если он попадает в операторы подмножества *E*, поэтому вероятность выхода из него равна нулю.

9) Выполнение оператора $a_{i(a)} \in A$ с последующим переходом в оператор $a_{i[0,i(a)]} \in O(a_{i(a)}) \neq \emptyset$ производится в течение случайного времени. Для плотности распределения времени выполнения оператора, $f_{i(a),i[0,i(a)]}(t)$, выполняются ограничения:

$$f_{i(a)i[0,i(a)]}(t) = 0$$
 при $t \le T_{i(a)i[0,i(a)]} \min \le 0, t \ge T_{i(a)i[0,i(a)]} \max$. (1.2.5)

Кроме того, в силу общих свойств плотностей распределения

$$\int_{0}^{\infty} f_{i(a),i[O,i(a)]}(t) = 1.$$

10) Вероятности $q_{i(B)}$, $p_{i(a),i[0,i(a)]}$ и параметры плотностей распределения $f_{i(a),i[0,i(a)]}(t)$ не коррелированы между собой и не зависят от того, каким образом вычислительный процесс попал в оператор $a_{i(a)}$.

11) Вероятности $q_{i(B)}$, $p_{i(a),i[0,i(a)]}$ и параметры плотностей распределения $f_{i(a),i[0,i(a)]}(t)$ для конкретного алгоритма, выполняемого в конкретной системе, являются постоянными или медленно меняющимися во времени величинами.

Алгоритмы приборов управления, по сравнению с классическими алгоритмами, обладают следующими специфическими особенностями, вытекающими из условий функционирования объекта.

С1) Алгоритмы являются циклическими.

$$E = \{e_{1(e)}, ..., e_{i(e)}, ..., e_{J(e)}\} \subset A$$
$$O(e_{i(e)}) = B = \{b_{1(b)}, ..., b_{i(b)}, ..., b_{J(b)}\} \subset A \neq \emptyset.$$
(1.2.6)

С2) Для операторов подмножества $E = \{e_{1(e)}, ..., e_{i(e)}, ..., e_{J(e)}\} \subset A$

$$p_{i(e),i[O,i(e)]} = \begin{cases} q_{i(b)}, ecnu i(b) = i(e), \\ 0, ecnu i(b) \neq i(e); \end{cases}$$

$$\sum_{i[O,i(e)]=1[O,i(e)]}^{Ji[O,i(e)]} p_{i(e),i[O,i(e)]} = \sum_{i(b)=1(b)}^{J(b)} q_{i(b)} = 1.$$
(1.2.7)

С3) Для операторов подмножества $E = \{e_{1(e)}, ..., e_{i(e)}, ..., e_{J(e)}\} \subset A$

$$f_{i(e),i[O,i(e)]}(t) = \delta(t), \qquad (1.2.8)$$

где $\delta(t)$ - δ -функция Дирака;

$$\delta(t) = \begin{cases} \infty npu \ t = 0, & \int_{0}^{\infty} \delta(t) dt = 1. \\ \infty npu \ t \neq 0; & \int_{0}^{\infty} \delta(t) dt = 1. \end{cases}$$

Цикличность алгоритмов интерпретируется следующим образом. При завершении обработки очередного массива данных, поступивших на цифровой системы управления, начинается обработка следующего массива. Поэтому для алгоритма характерными является следующие параметры:

плотность распределения времени между двумя последовательными опросами сенсорной системы $f_r(t)$;

плотность распределения времени между двумя последовательными обновлениями информации на экране дисплея оператора $f_w(t)$.

С4) Параллельно с алгоритмом *G* в бортовой ЭВМ может существовать алгоритм обработки прерываний [16, 33]

$$G_{int} = [U, V],$$

где $U = \{u_{1(u)}, ..., u_{i(u)}, ..., u_{J(u)}\}$ - множество операторов, в которые вычислительный процесс попадает в результате некоторого внешнего, по отношению к системе, воздействия, называемого прерыванием; $V = \{[u_{1(u)}, u_{i(u)}], ..., [u_{j(u)}, u_{J(u)}]\}$ - множество связей между операторами U алгоритма G_{int} .

В свою очередь, в оператор $u_{1(u)}$ вычислительный процесс попадает после

прерывания непосредственно, а из оператора $u_{J(u)}$ вычислительный процесс возвращается в тот оператор, при выполнении которого в систему поступило прерывание.

С5) Внешние прерывания в комплексе представляют собой поток случайных событий, причем время между двумя последовательными прерываниями определено плотностью g(t), для которой справедливы ограничения

$$g(t) = 0$$
 при $t \le \theta_{\min} \le 0, t \ge \theta_{\max}$. (1.2.9)

Кроме того, в силу общих свойств плотностей распределения

$$\int_{0}^{\infty} g(t)dt = 1.$$

Параметры плотности распределения g(t) не коррелированы с другими параметрами процесса. На плотность распределения g(t) могут быть наложены дополнительные ограничения, связанные например, с требованиями к стационарности потока, отсутствия последействия и т.п.

Общая структура алгоритмов приборов управления может быть представлена двусвязным графом, вид которого приведен на рис. 1.8.

Рисунок 1.8. Общая структура алгоритмов цифровых систем управления

1.2.8. Стохастические свойства детерминированных алгоритмов

Рассмотрим простейший алгоритма, блок-схема которого показана на рис.1.9.

В Фон-Неймановскую ЭВМ вводится случайная величина X, распределённая по закону f(x) с областью определения $-1 \le x \le 1$. [34, 35, 36]. Расчёт функции y, в формате с фиксированной запятой, может быть произведён за четыре такта машинного времени (при $x \le 0$) с вероятностью $\int_{-1}^{0} f(x) dx$, либо за двадцать тактов машинного времени (при x > 0) с вероятностью $\int_{0}^{1} f(x) dx$.

Рисунок 1.9. – К вопросу о стохастических свойствах детерминированных алгоритмов

Таким образом, время расчета величины *y* (состояние циклограммы обведено пунктирной линией) является случайной величиной, при этом источником случайности являются обрабатываемые данные. Если рассматривать вычисление каждой функции y := x и $y := x^2$, как одно из состояний циклограммы, то можно сделать вывод, что попадание в каждое из этих состояний также случайно. Таким образом, обработка данных по детерминированному алгоритму является стохастическим процессом и определяется плотностью распределения величины Х и условиями, определенными в состоянии принятия решения.

При вводе измерительной информации в Фон-Неймановскую ЭВМ существует потребность конвертации аналоговых сигналов s(t) в дискретные сигналы $\hat{s}_n(t)$. Собственно дискретизация вводимой в Фон-Неймановскую ЭВМ информации реализуется в результате процедуры полинга [37, 38, 39, 40].

1.2.9 Ошибки дискретизации и шум полинга

При реализации общего алгоритма ввода и обработки данных в Фон-Неймановскую ЭВМ, формируется циклограмма, показанная на рис. 1.10.

Цикл включает последовательное выполнение следующих операций:

обработка данных в Фон-Неймановской ЭВМ (временная задержка ${}^{1}T$);

ввод измерительной информации в Фон-Неймановскую ЭВМ (временная задержка ^{2}T).

Рисунок 1.10. – Циклограмма обработки данных в Фон-Неймановской ЭВМ

На выполнение операции ввода тратится $\frac{{}^{1}T}{{}^{1}T + {}^{2}T} \cdot 100\%$ времени, затрачиваемого на полный цикл обработки данных.

Допустимый период дискретизации определяется исходя из характеристик аналогового сигнала s(t). Этот сигнал, в целом, может быть определён импульсным откликом исполнительной подсистемы МО.

Спектральная характеристика импульсного отклика определяется передаточной функцией МО. Пусть $W(j\omega), \ j = \sqrt{-1}, -$ передаточная функция, описывающая функционирование МО [41, 42, 43]

Тогда ошибка дискретизации определяется зависимостью

$$\begin{split} \varepsilon_{\partial} &= \int_{\omega}^{\infty} W(j\omega) \cdot \overline{W(j\omega)} d\omega + \int_{-\infty}^{-\Omega} W(j\omega) \cdot \overline{W(j\omega)} d\omega + \\ &+ \sum_{\substack{n=-\infty\\n\neq 0}}^{\infty} \int_{-\Omega}^{\Omega} W(j[\omega - 2 \cdot n \cdot \Omega]) \cdot \overline{W(j[\omega - 2 \cdot n \cdot \Omega])} d\omega, \end{split}$$
(1.2.10)

где ω - круговая частота; $\Omega = \frac{\pi}{\tau_{\partial}}$; τ_{∂} - период дискретизации; $W(j[\omega - 2 \cdot n \cdot \Omega])$ - смещённая передаточная функция, в соответствии с теоремой Котельникова [43,]; $\overline{W(j\omega)}$ и $\overline{W(j[\omega - 2 \cdot n \cdot \Omega])}$ - комплексно сопряжённые передаточные функции;

В показанном случае, период дискретизации τ_{∂} складывается из времени обработки данных ${}^{1}T$ и времени ввода измерительной информации ${}^{2}T$. Время обработки измерительной информации, в свою очередь, определяется вычислительной сложностью алгоритма обработки данных на ЭВМ. Как правило, обработка данных сводится к вычислению интеграла свёртки с импульсным откликом регулятора [45, 46, 47], другой способ обработки измерительной информации заключается в вычислении оконного преобразования Фурье, умножении спектра ограниченной выборки на передаточную функцию регулятора и вычисления обратного преобразования Фурье [45, 46, 47]. В любом случае, обработка данных на ЭВМ занимает длительный период времени. С учётом ввода измерительной информации, суммарное время ${}^{1}T + {}^{2}T$, т.е. может не укладываться в требования теоремы Котельникова ${}^{1}T + {}^{2}T \le \tau_{\partial}$. Кроме того, при выполнении условия ${}^{1}T+{}^{2}T \cong \tau_{\partial}$ при дискретизации возникает т.н. «муаровый эффект» [46], который изменяет параметры управления МО. Поэтому для постабилизации целесообразно качества вышения условие выполнять $(5\div10)(^{1}T+^{2}T)\cong\tau_{\partial}.$

Кроме того, на основании вышеизложенного, время ${}^{1}T$ является случайным и определяется плотностью распределения вероятности попадания в конДля оценки величины шума полинга, в первом приближении можно считать, что сигнал, подвергающийся дискретизации, на интервале, отстоящем от момента первой транзакции на величину, определяемую плотностью распределения $f(\tau_{\partial})$, меняется по линейному закону x(t)

$$x(t) = c(t - {}^{1}T) + x_{0}, \qquad (1.2.11)$$

где $x_0 = x ({}^{1}T); {}^{1}T = \int_{0}^{\infty} tg(t)dt$ - математическое ожидание плотности распреде-

ления ${}^{1}f(\tau_{\partial}); c = \frac{dx(t)}{dt}_{t=T}$ - коэффициент наклона касательной к кривой x(t) в

точке ${}^{1}T$.

Из (1.2.11) следует, что $t = \frac{x(t) + c \cdot {}^{1}T - x_{0}}{c}$. В этом случае плотность рас-

пределения величины хопределяется зависимостью

рис. 1.10, возникает шум полинга [40].

$$g_{x}(x) = \frac{1}{c} \cdot g(\frac{x + c \cdot {}^{1}T - x_{0}}{c}).$$
(1.2.12)

Таким образом, шум представляет собой серию импульсов с дисперсией, определяемой следующим образом

$$D_x = c^2 \int_{t=0}^{\infty} (t - {}^{1}T)^2 \cdot {}^{1}f(\tau_{\partial})dt. \qquad (1.2.13)$$

Для оценки величины шума следует определить c_{\max} . Максимума вели-

чина $c = \frac{dx}{dt}c$ достигает в точках $\frac{d^2x(t)}{dt^2} = 0$; $\frac{d^3x(t)}{dt^3} < 0$, пусть это будут точки $c_{\max 1}, \dots, c_{\max u(c)}, \dots, c_{\max U(c)}$.Тогда мощность шума от стохастической дис-

кретизации не превышает значения

$$\varepsilon_{ul} \le \left\{ \max \left[c_{\max 1}, \dots, c_{\max u(c)}, \dots, c_{\max U(c)} \right] \right\}^2 \int_{t=0}^{\infty} (t - {}^{1}T)^2 \cdot {}^{1}f(\tau_{\partial}) dt \,.$$
(1.2.14)

Шум полинга добавляется к ошибке дискретизации и увеличивает её [40].

1.3. Известные методы управления МО

Известны общие принципы управления, изложенные в [45, 46, 47]. Из существующих методов управления, рассматривающих системы с обратной связью и без неё (рис.1.11). для управления МО целесообразно использовать системы с обратной связью, как обеспечивающие наиболее высокую точность управления.

Одним из известных методов управления МО является метод подчинённого управления [45, 46, 47], суть которого заключается в каскадном включении регуляторов. Системы управления, в таком случае реализуют показанную на рис.1.12 структуру.

Рисунок 1.12. – Структура многоконтурной системы управления с подчинённым управлением

Методы синтеза и анализа систем с подчинённым управлением являются хорошо известными и проработанными [45, 46, 47]. Инженерные методы расчёта параметров регуляторов по контурам сравнительно просты, и предполагают пошаговый расчёт параметров регуляторов от первого, внутреннего контура к внешнему, *n*-му контуру.

$$W_{K,n}(p) = W_{n-l}(p) \cdot W_{P,n-l}(p) \cdot W_{I,n}$$
(1.3.1)

где $W_{K,n}(p)$ - передаточная функция разомкнутого контура, $W_{n-l}(p)$ - передаточная функция подчинённого контура, $W_{\mathcal{I},n}$ - передаточная функция сенсора.

Показанный метод рассматривает классические реализации регуляторов, и не позволяет учесть влияние ранее рассмотренных явлений случайности времени обработки данных, ошибки дискретизации, шума полинга и учёт времени запаздывания.

В настоящее время, для управления сложными МО наиболее популярными являются методы нелинейного синтеза адаптивных систем управления. Настоящий метод предполагает иерархическую структуру системы управления, включающую особое звено, называемо адаптером (рис.1.13).

Рисунок 1.13. – Система адаптивного управления

Суть метода адаптивного управления состоит в изучении объекта управления, с передаточной функцией $W_{OY}(p)$ во время собственно управления, в ходе которого, на основании входного воздействия *g*и сигнала *y* обратной связи, формируется сигнал *e* рассогласования, поступающий на вход регулятора, с передаточной функцией $W_P(p)$. На выходе регулятора формируется управляющее воздействие u, которое, на основании исследуемых, параллельно с процессом управления, свойствами объекта управления корректируется адаптатором, с передаточной функцией $W_A(p)$, в виде корректирующего воздействия v. В результате, на объект управления, с передаточной функцией $W_{Oy}(p)$, поступает управляющее воздействие q.

Описанный метод является предпочтительным, поскольку управление MO, в той или иной мере предполагает адаптацию к условиям функционирования и самоорганизацию.

К достоинствам описанного метода относится возможность организации крайне гибких систем управления.

Недостатком метода является крайне высокая вычислительная сложность алгоритма адаптатора, что предполагает применение сложных вычислительных машин, Фон-Неймановского типа, что, в свою очередь, приводит к появлению описанных выше явлений случайности времени обработки данных, ошибки дискретизации, шума полинга и учёт времени запаздывания, влияние которых собственно на управление растёт, пропорционально вычислительной сложности алгоритма обработки данных.

1.4. К вопросу о моделирования цифровых систем управения

При реализации цифрового управления, с помощью выше описанных методов, неизбежно возникают явления, описанных в п.1.2.6-1.2.9 что, позволяют заключить, что естественной моделью для описания временных характеристик процедуры обработки данных сенсорной подсистемы цифровой системой управления, построенной на Фон-Неймановской ЭВМ, является полумарковский процесс [49, 50, 51, 52 53], определенный парой

$$M = [G, H(t)], (1.3.2)$$

где *G* - граф, описывающий структуру процесса; *H*(*t*) - полумарковская матрица.

Структура графа *G*, описывающего полумарковский процесс, определяется структурой описываемого им алгоритма:
$$G = [A, Z] = \{A, O(A)\} = \{A, I(A)\}$$

где A - конечное множество состояний, совпадающее со множеством $A = \{a_{1(a)}, ..., a_{i(a)}, ..., a_{J(a)}\}$ операторов алгоритма; $Z = \{[a_{i(a)}, a_{j(a)}], ..., [a_{k(a)}, a_{l(a)}]\}$ - множество переходов между состояниями, совпадающее со множеством переходов между операторами алгоритма; O(A) - выходная функция состояний процесса; I(A) - входная функция состояний процесса;

$$O(A) = \{O(a_{1(a)}), ..., O(a_{i(a)}), ..., O(a_{J(a)})\};$$

$$I(A) = \{I(a_{1(a)}), ..., I(a_{i(a)}), ..., I(a_{J(a)})\};$$

 $O(a_{i(a)}) = \{a_{1[O,i(a)]}, ..., a_{i[O,i(a)]}, ..., a_{J[O,i(a)]}\} \subset A$ - множество состояний, в которые полумарковский процесс может переключиться из состояния $a_{i(a)}; I(a_{i(a)}) = \{a_{1[I,i(a)]}, ..., a_{i[I,i(a)]}, ..., a_{J[I,i(a)]}\} \subset A$ - множество состояний, из которых полумарковский процесс может переключиться в состояние $a_{i(a)}$.

Предлагаемый метод описания цифровых систем управления обладает важным достоинством, заключающемся в том, что позволяет однозначно оценить и спрогнозировать временные задержки, возникающие при функционировании цифровых систем управления [21, 22, 23, 40].

1.5. Выводы

1) Проведён системный анализ существующих многоконтурных объектов;

2) На основании проведённого системного анализа, показано, что существующие МО имеют цифровые системы управления, а их структура, независимо от специфики решаемых ими задач, имеет общие характерные особенности, такие как замыкающиеся через цифровой контроллер контуры управления;

3) Показано, что функционирование цифровой системы управления сопровождается временными задержками, стохастического характера.

4) Рассмотрены основные методы управления и показано, что для описания функционирования цифровой системы управления может быть использована теория полумарковских процессов.

2. МОДЕЛЬ СИЛОВОЙ ГИДРАВЛИЧЕСКОЙ СИСТЕМЫ ОДНОКОВШОВОГО ЭКСКАВАТОРА, КАК МНОГОКОНТУРНОГО ОБЪЕКТА ИЗМЕРЕНИЯ И УПРАВЛЕНИЯ

2.1. Математические модели гидроприводов

В разделе 1, на рис. 1.5 показан одноковшовый гусеничный экскаватор, фирмы «Caterpillar», на гусеничном ходу. Опираясь на каталоги компании «Caterpillar», можно сделать вывод, что в спецтехнике такого класса применяются два типа гидроприводов: привод с прямым ходом штока и привод с объемным регулированием.

Получим системы уравнений, описывающих динамику приводов обоих типов с учетом того, что все факторы, воздействующие на их исполнительные органы, такие, как масса/момент инерции и коэффициент вязкого трения отнесены к внешним, по отношению к приводам, конструктивным элементам.

2.1.1. Линейный привод двустороннего действия

Функциональная схема линейного гидропривода двустороннего действия приведена на рис. 2.1. В состав привода входит поршень S, цилиндр с двумя проточными полостями, V_1 и V_2 , регулируемые клапаны f_1 и f_2 , нерегулируемые дроссели f'_1 и f'_2 и шток L_3 . Расстояние между левой стенкой корпуса и правой крайней точкой штока является выходным параметром привода.

При описании привода двустороннего действия с прямым ходом штока примем следующие дополнительные допущения:

масса подвижных частей штока учтена при описании стержневого узла;

вязкое трение в подвижных частях штока также учтено при описании стержневого узла;

привод жестко установлен на основание;

упругость штока и продольная упругость цилиндра пренебрежимо малы;

в гидросистеме циркулирует сжимаемая жидкость с модулем объемной упругости *β*; давление p_1 в полости V_1 и давление p_2 в полости V_2 обеспечивается двумя регулируемыми клапанами с эффективными площадями сечения f_1 и f_2 , соответственно;

дроссели на выходах полостей цилиндров имеют одинаковые эффективные площади $f'_1 = f'_2 = f_3$;

перетекание рабочей жидкости из одной полости в другую отсутствует;

трубопроводы считаются линиями с сосредоточенными параметрами, гидравлические сопротивления трубопроводов отнесены к сопротивлениям соответствующих регулируемых клапанов и выходных дросселей.

Рисунок 2.1. – Линейный гидропривод двустороннего действия

С учетом принятых допущений объемные расходы рабочего тела через первый и второй регулируемые клапаны определяются зависимостями [54, 55, 56, 57]:

$$Q_1 = c_1 f_1(t) \sqrt{\frac{2[p_0(t) - p_1]}{d}}; \qquad (2. 1.1 2.51)$$

$$Q_2 = c_2 f_2(t) \sqrt{\frac{2[p_0(t) - p_2]}{d}}, \qquad (2.1.2\ 2.52)$$

где c_1 , c_2 - коэффициент расхода через первый и второй регулируемые клапаны; $f_1(t)$, $f_2(t)$ - площади проходных сечений первого и второго регулируемых кла-

40

панов, являющиеся управляющими воздействиями в приводе; d - плотность жидкости; $p_0(t) - p_1$ - перепад давления на первом регулируемом клапане; $p_0(t) - p_2$ - перепад давления на втором регулируемом клапане; $p_0(t)$ - входное давление рабочего тела в приводе, в общем случае являющееся функцией времени.

Коэффициенты расхода c_1 и c_2 в общем случае зависят от формы проточной части регулируемого клапана, являются функцией числа Рейнольдса и зависят от гидравлического радиуса, смоченного периметра и кинематической вязкости жидкости. Если в системе применяются одинаковые регулируемые клапаны, то $c_1 = c_2 = c$. Введем параметр 9, определяемый по зависимости [55, 57]

$$\mathcal{G} = c_{\sqrt{\frac{2}{d}}}.$$
(2.1.3)

Тогда зависимости (2.1.1), (2.1.2) могут быть представлены в виде:

$$Q_1 = \mathscr{H}_1(t) [p_0(t) - p_1]^{\frac{1}{2}}; \qquad (2.1.4)$$

$$Q_2 = \mathcal{H}_2(t) [p_0(t) - p_2]^{\frac{1}{2}}.$$
(2.1.5)

Суммарный объемный расход привода определяется в виде [58,59]

$$Q = Q_1 + Q_2 = \mathscr{H}_1(t)[p_0(t) - p_1]^{\frac{1}{2}} + \mathscr{H}_2(t)[p_0(t) - p_2]^{\frac{1}{2}}.$$
 (2.1.6)

Объемные расходы через выходные дроссели с учетом симметрии устройства и постоянства проходных сечений выходных дросселей определяются в виде

$$Q'_{1} = \vartheta' f' (p_{1} - p_{3})^{\frac{1}{2}}; \qquad (2.1.7)$$

$$Q'_{2} = \mathscr{G}f(p_{2} - p_{3})^{\frac{1}{2}},$$
 (2.1.8)

где

$$\mathcal{G}' = c' \sqrt{\frac{2}{d}} ; \qquad (2.1.9)$$

c'- коэффициент расхода через первый и второй выходные дроссели, одинаковые для обоих указанных элементов; $(p_1 - p_3)$ - перепад давления на первом выходном дросселе; $(p_2 - p_3)$ - перепад давления на втором выходном дросселе; p_3 - выходное давление из гидросистемы, которое можно считать одинаковым для обоих дросселей и постоянным, равным, например, атмосферному давлению $f'_1 = f'_2 = f'$ - площади проходных сечений первого и второго выходных дросселей.

Уравнения расхода рабочего тела из первой и второй полостей с учетом сжимаемости жидкости имеют вид [60, 61, 62]:

$$Q_{1} = S_{1} \frac{dL_{3}}{dt} + \frac{V_{1}}{\beta} \cdot \frac{dp_{1}}{dt} + Q_{1}'; \qquad (2.1.10)$$

$$Q_2 = -S_2 \frac{dL_3}{dt} + \frac{V_2}{\beta} \cdot \frac{dp_2}{dt} + Q'_2, \qquad (2.1.11)$$

где $S_1 \frac{dL_3}{dt}$ и $S_1 \frac{dL_3}{dt}$ - члены, учитывающие движение поршня привода; $\frac{V_1}{\beta} \cdot \frac{dp_1}{dt}$ - член, который учитывает изменение плотности жидкости; S_1 и S_2 - площади поршня в первой и второй полостей гидроцилиндра; V_1 - объем первой полости; V_2 - объем второй полости;

$$V_1 = S_1 (L_{30} + \varepsilon_{L3}); (2.1.12)$$

$$V_2 = S_2 (L_{30} - \varepsilon_{L3}), \qquad (2.1.13)$$

где L_{30} - среднее установившееся значение L_3 , необходимое для проходки тоннеля заданного диаметра; ε_{L3} - отклонение поршня от среднего установившегося значения.

С учетом невысокого быстродействия привода, потоки жидкости в первой и второй полостях можно считать ламинарными, поэтому для них может быть записано уравнение неразрывности [60, 63]:

$$\mathscr{G}_{f_1}(t)[p_0(t) - p_1]^{\frac{1}{2}} = \mathscr{G}'f'(p_1 - p_3)^{\frac{1}{2}} + S_1\frac{dL_3}{dt} + \frac{S_1(L_{30} + \varepsilon_{L3})}{\beta} \cdot \frac{dp_1}{dt}; \qquad (2.1.14)$$

$$\mathscr{G}_{2}(t)[p_{0}(t)-p_{2}]^{\frac{1}{2}} = \mathscr{G}'f'(p_{2}-p_{3})^{\frac{1}{2}} - S_{2}\frac{dL_{3}}{dt} + \frac{S_{2}(L_{30}-\varepsilon_{L3})}{\beta} \cdot \frac{dp_{2}}{dt}.$$
 (2.1.15)

Выражения (2.56), (2.64) и (2.65) должны быть дополнены уравнением сил

$$F'_{uu} = S_1 p_1 - S_2 p_2, \qquad (2.1.16)$$

где F'_{u} - сила, действующая со стороны штока привода на рукоять и равная, согласно третьему закону Ньютона силе F_{u} .

Зафиксируем величину L₃ в некотором положении. Тогда в установив-

шемся режиме, когда $\frac{dL_3}{dt} = 0$, $\frac{dp_0(t)}{dt} = 0$, $\frac{dp_1}{dt} = 0$, $\frac{dp_2}{dt} = 0$, выполняются соот-

ношения

$$\begin{aligned} \mathscr{G}'f'(p_{10}-p_3)^{\frac{1}{2}} &= \mathscr{G}_{10}[p_{00}-p_{10}]^{\frac{1}{2}};\\ \mathscr{G}'f'(p_{20}-p_3)^{\frac{1}{2}} &= \mathscr{G}_{20}[p_{00}-p_{20}]^{\frac{1}{2}}, \end{aligned}$$

откуда следует:

$$p_{10} = \frac{\mathcal{9}^2 f_{10}^2 p_{00} + \mathcal{9}'^2 f'^2 p_3}{\mathcal{9}^2 f_{10}^2 + \mathcal{9}'^2 f'^2}; \qquad (2.1.17)$$

$$p_{20} = \frac{\mathcal{G}^2 f_{20}^2 p_{00} + {\mathcal{G}'}^2 {f'}^2 p_3}{\mathcal{G}^2 f_{20}^2 + {\mathcal{G}'}^2 {f'}^2}, \qquad (2.1.18)$$

где p_{00} - установившееся значение давления в напорной магистрали; p_{10} , p_{20} - установившиеся значения давлений в первой и второй полостях привода; f_{10} , f_{20} - установившиеся значения проходных сечений первого и второго регулируемых клапанов.

Уравнения (2.1.6), (2.1.14), (2.1.15) и (2.1.16) представляют собой полную систему уравнений, описывающих линейный привод 3. Входными воздействиями в привод являются эффективные площади сечений регулируемых клапанов $f_1(t)$ и $f_2(t)$, давление в магистрали $p_0(t)$ и сила, действующая вдоль направления штока F'_{u} а выходным параметром - положение штока L_3 . Кроме того, в процессе расчетов могут быть определен суммарный объемный расход Q(t), а также давления в рабочих полостях $p_1(t)$ и $p_2(t)$.

Из уравнений (2.1.6), (2.1.14), (2.1.15), (2.1.16) может быть получена система в отклонениях:

$$a_{1p10}\delta_{p1} + a_{1p20}\delta_{p2} + a_{1Q0}\delta_{Q} = a_{1p00}\delta_{p0} + a_{1f10}\delta_{f1} + a_{1f20}\delta_{f2};$$

$$a_{2p11}\dot{\delta}_{p1} + a_{2p10}\delta_{p1} = a_{2p00}\delta_{p0} + a_{2f10}\delta_{f1} + a_{2L31}\dot{\delta}_{L3} + a_{2L30}\delta_{L3};$$

$$a_{3p21}\dot{\delta}_{p2} + a_{3p20}\delta_{p2} = a_{3p00}\delta_{p0} + a_{3f20}\delta_{f2} + a_{3L31}\dot{\delta}_{L3} + a_{3L30}\delta_{L3}; \qquad (2.1.19)$$
$$a_{4p10}\delta_{p1} + a_{4p20}\delta_{p2} + a_{4u0}\delta_{u} = 0.$$

Точка разложения нелинейных уравнений (2.1.6), (2.1.14), (2.1.15) и (2.1.16) в ряд Тейлора определяется из зависимостей $\dot{L}_{30} = 0$, $\dot{p}_{00} = 0$, $\dot{p}_{10} = 0$, $\dot{p}_{20} = 0$; (2.1.17, (2.1.18), а также

$$F'_{\mu 0} = S_1 p_{10} - S_2 p_{20};$$

$$Q_0 = \mathcal{G}_{10} \Big[p_{00} - p_{10} \Big]^{\frac{1}{2}} + \mathcal{G}_{20} \Big[p_{00} - p_{20} \Big]^{\frac{1}{2}}, \qquad (2.1.20)$$

где \dot{L}_{30} , L_{30} , \dot{p}_{00} , p_{00} , \dot{p}_{10} , p_{10} , \dot{p}_{20} , p_{20} , f_{10} , f_{20} , Q_0 ; F'_{u0} - значения соответствующих величин в точке разложения.

В (2.1.19) параметры а... определяются по зависимостям:

$$a_{1p00} = \frac{9}{2} \left[\frac{f_{10}}{(p_{00} - p_{10})^{\frac{1}{2}}} + \frac{f_{20}}{(p_{00} - p_{20})^{\frac{1}{2}}} \right]; \ a_{1f10} = 9 [p_{00} - p_{10}]^{\frac{1}{2}}; \ a_{1f20} = 9 [p_{00} - p_{20}]^{\frac{1}{2}}; a_{1p10} = \frac{9 f_{10}}{2(p_{00} - p_{10})^{\frac{1}{2}}}; \ a_{1p20} = \frac{9 f_{20}}{2(p_{00} - p_{20})^{\frac{1}{2}}}; \ a_{1Q0} = 1;$$

$$\begin{aligned} a_{2p00} &= \frac{\mathscr{G}_{10}}{2(p_{00} - p_{10})^{\frac{1}{2}}}; \ a_{2f10} = \mathscr{G}[p_{00}(t) - p_{10}]^{\frac{1}{2}}; \ a_{2p11} = -\frac{S_1 L_{30}}{\beta}; \\ a_{2p10} &= \frac{\mathscr{G}_{10}'}{2(p_{10} - p_3)^{\frac{1}{2}}} + \frac{\mathscr{G}_{10}}{2(p_{00} - p_{10})^{\frac{1}{2}}}; \ a_{2L301} = S_1; \ a_{2L300} = 0; \\ a_{3p00} &= \frac{\mathscr{G}_{20}}{2(p_{00} - p_{20})^{\frac{1}{2}}}; \ a_{3f20} = \mathscr{G}[p_{00}(t) - p_{20}]^{\frac{1}{2}}; \ a_{3p11} = -\frac{S_2 L_{30}}{\beta}; \\ a_{3p20} &= \frac{\mathscr{G}_{10}'}{2(p_{20} - p_{20})^{\frac{1}{2}}} + \frac{\mathscr{G}_{20}}{2(p_{00} - p_{20})^{\frac{1}{2}}}; \ a_{3L301} = S_2; \ a_{3L300} = 0; \\ a_{4u0} &= -1; \ a_{4p10} = S_1; \ a_{4p20} = -S_2. \end{aligned}$$

Из (2.1.19) может быть получена система линейных алгебраических уравнений в операторной форме [64]:

$$a_{1p10}\delta_{p1}(s) + a_{1p20}\delta_{p2}(s) + a_{1Q0}\delta_{Q}(s) =$$

$$= a_{1p00}\delta_{p0}(s) + a_{1f10}\delta_{f1}(s) + a_{1f20}\delta_{f2}(s);$$

$$a_{2p11}s\delta_{p1}(s) + a_{2p10}\delta_{p1}(s) =$$

$$= a_{2p00}\delta_{p0}(s) + a_{2f10}\delta_{f1}(s) + a_{2L31}s\delta_{L3}(s) + a_{2L30}\delta_{L3}(s);; \qquad (2.1.21)$$

$$a_{3p21}s\delta_{p2}(s) + a_{3p20}\delta_{p2}(s) =$$

$$= a_{3p00}\delta_{p0}(s) + a_{3f20}\delta_{f2}(s) + a_{3L31}s\delta_{L3}(s) + a_{3L30}\delta_{L3}(s);$$

$$a_{4p10}\delta_{p1}(s) + a_{4p20}\delta_{p2}(s) + a_{4u0}\delta_{u}(s) = 0.$$

Система (2.1.21) может быть разрешена относительно выходных (регулируемых) параметров δ_{p1} , δ_{p2} , δ_Q , δ_u .

2.1.2. Гидропривод с объемным регулированием

Рассмотрим гидропривод с объемным регулированием аксиально-поршневого типа с наклонным диском, расположенным под углом к оси выходного вала (рис. 2.2).

Привод включает в себя вращающийся блок цилиндров, внутри которого возвратно-поступательно перемещаются поршни S, упирающиеся в наклонный диск γ . Привод подключен к магистрали с давлением p_0 через распределительную шайбу, которая при вращении цилиндра обеспечивает подключение части цилиндров к напорному, а другой части цилиндров к сливному трубопроводу. За счет дросселирования на входном трубопроводе давление в рабочих полостях понижается до p_A . Таким образом, в цилиндры последовательно, один за другим, закачивается рабочее тело с давлением p_A до тех пор, пока при вращении блока на каждом из них обеспечивается положительный момент, воздействующий на выходной вал. После попадания соответствующего цилиндра в положение, при котором создается отрицательный момент, открывается сливное отверстие и рабочее тело выдавливается при давлении p_1 в резервуар.

Описание гидропривода с объемным регулированием построим при следующих допущениях: перетекание жидкости в обратный трубопровод учитывается соответствующим членом уравнения неразрывности;

дросселирование на входе в рабочие полости гидроцилиндров осуществляется в подводящем трубопроводе, который считается линией с сосредоточенными параметрами.

Рисунок 2.2. - Функциональная схема гидропривода с объемным регулированием

Таким образом, крутящий момент на валу гидропривода создается поршнями, находящимися в данный момент под давлением *p_A*:

$$\mu(t) = \sum_{i=1}^{n(A)} \mu_i(t), \qquad (2.1.22)$$

где $\mu(t)$ - суммарный текущий момент на валу гидропривода; $\mu_i(t)$ - текущий момент одного поршня на валу; n(A) - количество поршней, одновременно находящихся под давлением в магистрали.

Если давление в полости нагнетания равно p_A , то на поршень площадью S_A действует сила

$$F_i = S_A p_A, \tag{2.1.23}$$

где *S*_{*A*} - площадь поршня, одинаковая для всех цилиндров привода.

Сила F_i раскладывается на нормальную $F_i \cos \gamma_A$ и тангенциальную $F_i \sin \gamma_A$ составляющие. Нормальная сила уравновешивается реакцией в опорах выходного вала, а тангенциальная сила создает крутящий момент, равный

$$\mu_i = S_A p_A r_A \sin \gamma_A \sin \psi_i, \qquad (2.1.24)$$

где ψ_i - угол поворота выходного вала двигателя относительно плоскости угла между выходным валом и осевой блока цилиндров; r_A - радиус расположения центров цилиндров относительно центра вращения блока цилиндров; γ_A - угол между осями вращения блока цилиндров и выходного вала.

Кроме того, на выходной вал действует момент сил сухого трения, пропорциональный нагрузке, создаваемой нормальной составляющей:

$$\mu_{\mathrm{Tp}A} = \kappa_A n(A) S_A p_A \cos \gamma_A + \mu_{\mathrm{Tp}0A}, \qquad (2.1.25)$$

где κ_A - коэффициент сухого трения в подшипниках выходного вала; μ_{rp0A} - приведенный начальный момент диссипативных сил, имеющих место в шарнирах поршней, в подшипниках, в самих поршнях и т.п.

Таким образом, на выходной вал гидропривода действует суммарный момент, равный

$$\mu' = S_A p_0 r_A \sin \gamma_A \sum_{i=1}^{n(A)} \sin(\psi_b + i\Delta_{\psi}) + \kappa_A n(A) S_A p_0 \cos \gamma_A + \mu_{\text{Tp}0A}, \qquad (2.1.26)$$

где Δ_{ψ} - угловой шаг расположения гидроцилиндров; ψ_b - начальное значение угла ψ_i , при котором *i*-й цилиндр подключается к магистрали с давлением p_0 .

Момент (2.1.26) уравновешивается внешним моментом, моментом инерции и моментом вязкого трения. Таким образом, для гидропривода, приводящего в движение стержневой узел справедлива зависимость:

$$S_{A}p_{A}r_{A}\sin\gamma_{A}\sum_{i=1}^{n(A)}\sin(\psi_{b}+i\Delta_{\psi})+\kappa_{A}n(A)S_{A}p_{A}\cos\gamma_{A}+\mu_{rp0A}-\frac{1}{N}\mu=J_{A}\ddot{\psi}+\eta_{A}\dot{\psi}, (2.1.27)$$

где J_A и η_A - соответственно, момент инерции и коэффициент вязкого трения в элементах конструкции гидропривода стержневого узла; μ - момент внешних сил, действующих на привод со стороны стержневого узла; S_A , γ_A , μ_{rp0A} - соответствующие конструктивные параметры привода A. Аналогично,

$$S_E p_E r_E \sin \gamma_E \sum_{i=1}^{n(E)} \sin \left(\dot{\theta}_b t + i \Delta_\theta \right) + \kappa_E n(E) S_E p_E \cos \gamma_E + \mu_{\text{rp0}E} - \mu_F = J_E \ddot{\theta} + \eta_E \dot{\theta} , \quad (2.1.28)$$

где J_E и η_E - соответственно, момент инерции и коэффициент вязкого трения в элементах конструкции гидропривода породоразрушающего барабана; μ_F - момент внешних сил, действующих на привод со стороны барабана; S_E , γ_E , μ_{rp0V} соответствующие конструктивные параметры привода E; p_E - давление в рабочих полостях гидропривода.

Следует отметить, что силы, создающие крутящий момент, даже при постоянном давлении в магистрали являются переменными (рис. 2.3), однако с достаточной для практических целей точностью их сумму можно считать постоянной.

Рисунок 2.3.- Моменты на цилиндрах и суммарный крутящий момент привода

Пики на графике крутящего момента обусловлены процессами открытия и закрытия клапанов соответствующих цилиндров при попадании их в область действия давления p_0 . Длительность пиков зависит от диаметров проходных отверстий вращающегося цилиндра и неподвижного распределительного диска,

подключенного к магистрали. Величина пиков в процентном отношении определяется количеством цилиндров одновременно находящихся под входным давлением.

Определим расходную характеристику двигателя на примере двигателя в шарнире *А*. Объем *i*-го цилиндра определяется в виде (см. рис. 2.4):

$$V_{i} = S_{A} r_{A} \operatorname{tg} \gamma_{A} (1 + \cos \psi_{i}) + V_{0A}, \qquad (2.1.29)$$

Рисуноу 2.4. - К определению расхода рабочего тела в приводе

Суммарный объем, цилиндров, пополняемых из магистрали с давлением *p*₀, определяется зависимостью

$$V_{A} = \sum_{i=1}^{n(A)} S_{A} r_{A} \operatorname{tg} \gamma_{A} (1 + \cos \psi_{i}) + n(A) V_{0A}$$
(2.1.30)

Объемный расход рабочего тела через входной трубопровод определяются зависимостью

$$Q_{A} = N \mathcal{G}_{A} f_{A} [p_{0}(t) - p_{A}]^{\frac{1}{2}}, \qquad (2.1.31)$$

где \mathcal{G}_A - параметр, зависящий от коэффициент расхода через трубопровод и плотность жидкости; f_A - площадь проходного сечения трубопровода; $p_0(t) - p_A$ - перепад давления на трубопроводе.

Объемный расход вытекающей рабочей жидкости равен

$$Q'_{A} = N \mathcal{G}'_{A} f'_{A} \left[p_{A}(t) - p_{1} \right]^{\frac{1}{2}}, \qquad (2.1.32)$$

где \mathscr{G}'_A - параметр; f'_A - площадь проходного сечения щелей, через которые происходит утечка жидкости; $p_A(t)$ - p_1 - перепад давления на трубопроводе.

Поскольку вся рабочая жидкость расходуется на заполнение рабочей полости, уравнение неразрывности имеет вид

$$\mathcal{G}_{A}f_{A}(t)[p_{0}(t)-p_{A}]^{\frac{1}{2}} = \mathcal{G}_{A}'f_{A}'[p_{A}(t)-p_{1}]^{\frac{1}{2}} + S_{A}r_{A}\operatorname{tg}\gamma_{A}\frac{d\sum_{i=1}^{n(A)}(1+\cos(\psi_{b}+i\Delta_{\psi}))}{dt} + \frac{\sum_{i=1}^{n(A)}S_{A}r_{A}\operatorname{tg}\gamma_{A}(1+\cos\psi_{i})+n(A)V_{0A}}{\beta} \cdot \frac{dp_{A}}{dt},$$

$$(2.1.33)$$

где n(A) считается константой равной, количеству открытых клапанов, когда оба крайних клапана не перекрываются одновременно отверстием распределительной шайбы.

Для привода Е уравнения (2.1.31), (2.1.32) и (2.1.33) выглядят как

$$Q_{E} = \vartheta_{E} f_{E} [p_{0}(t) - p_{E}]^{\frac{1}{2}}, \qquad (2.1.34)$$

$$Q'_{E} = \mathscr{G}'_{E} f'_{E} [p_{E}(t) - p_{1}]^{\frac{1}{2}}, \qquad (2.1.35)$$

n(F)

$$\mathcal{G}_{E}f_{E}(t)[p_{0}(t)-p_{E}]^{\frac{1}{2}} = \mathcal{G}_{E}'f_{E}'[p_{E}(t)-p_{1}]^{\frac{1}{2}} + S_{E}r_{E}\operatorname{tg}\gamma_{E}\frac{d\sum_{i=1}^{n(E)}(1+\cos(\theta_{b}+i\Delta_{\theta}))}{dt} + \frac{\sum_{i=1}^{n(E)}S_{E}r_{E}\operatorname{tg}\gamma_{E}(1+\cos\theta_{i})+n(E)V_{0E}}{\beta} \cdot \frac{dp_{E}}{dt},$$

$$(2.1.36)$$

Уравнения (2.1.27), (2.1.31) и (2.1.33) полностью описывают динамику линейного привода. Уравнения (2.1.34), (2.1.35) и (2.1.36) полностью описывают динамику привода объёмного привода. Входными воздействиями в системе является давление в магистрали p_0 и момент на выходном валу μ , как возмущающее воздействие. Выходными параметрами являются угол поворота вала ψ , давление в цилиндрах p_A и расход рабочего тела Q_A . Для объёмного привода входными параметрами являются угол момент на выходном валу μ_F , Выходными параметрами являются угол θ , давление p_E и расход Q_E .

Из (2.1.27), (2.1.37), (2.1.33) и (2.1.34), (2.1.35), (2.1.36) путем разложения в ряд Тейлора могут быть получены системы в отклонениях и системы, описывающие установившийся режим работы привода. В качестве точки разложения следует выбрать угол ψ (угол \mathcal{G}) таким, чтобы при неперекрывающихся одновременно крайних клапанах остальные клапаны были расположены симметрично относительно осевой отверстия распределительной шайбы. При этом параметр ψ_b можно считать постоянным.

Уравнения равновесия имеют вид:

$$S_{A}p_{A0}r_{A}\sin\gamma_{A}\sum_{i=1}^{n(A)}\sin(\psi_{b0}+i\Delta_{\psi})+\kappa_{A}n(A)S_{A}p_{A}\cos\gamma_{A}+\mu_{\text{Tp}0A}=\frac{\mu_{0}}{N};$$

$$Q_{A0}=N\mathcal{G}_{A}f_{A}[p_{00}(t)-p_{A0}]^{\frac{1}{2}};$$

$$(2.1.37)$$

$$\mathcal{G}_{A}f_{A}(t)[p_{00}-p_{A0}]^{\frac{1}{2}}=\mathcal{G}_{A}'f_{A}'[p_{A0}-p_{1}]^{\frac{1}{2}}+S_{A}r_{A}\operatorname{tg}\gamma_{A}\frac{d\sum_{i=1}^{n(A)}(1+\cos(\psi_{b}+i\Delta_{\psi}))}{dt}|\psi_{b}=\psi_{b0},$$

где ψ_{b0} - угол, соответствующий условиям точки разложения; p_{A0} , ψ_0 и μ_0 - значения соответствующих параметров в точке разложения.

Уравнения в отклонениях имеют вид:

$$a_{1\mu0}\delta_{\mu} + a_{1pA0}\delta_{pA} = a_{1\psi2}\dot{\delta}_{\psi} + a_{1\psi1}\dot{\delta}_{\psi};$$

$$a_{2pA0}\delta_{pA} + a_{2QA0}\delta_{QA} = a_{2p0}\delta_{p0};$$

$$a_{3pA1}\dot{\delta}_{pA} + a_{3pA0}\delta_{pA} = a_{3\psi0}\delta_{\psi} + a_{3p0}\delta_{p0}.$$
(2.1.38)

...

 $\dot{\psi} = \dot{\psi}_0$

где

$$a_{1\mu0} = \frac{1}{N}; \ a_{2p0} = a_{3p0} = \frac{\mathcal{G}_A f_A}{2\sqrt{p_{00} - p_{A0}}}; \ a_{1\psi2} = -J_A; \ a_{1\psi1} = -\eta_A;$$

$$a_{1pA0} = -S_A \left[\sin \gamma_A r_A \sum_{i=1}^{n(A)} \sin(\psi_{b0} + i\Delta_{\psi}) + \kappa n(A) \cos \gamma_A \right]; \ a_{2pA0} = \frac{N\mathcal{G}_A f_A}{2\sqrt{p_{00} - p_{A0}}};$$

$$a_{2QA0} = -1; \ a_{3\psi0} = -S_A r_A \operatorname{tg} \gamma_A \dot{\psi}_0 \frac{d \sum_{i=1}^{n(A)} (1 + \cos(\psi_b + i\Delta_{\psi}))}{d\psi} \right|_{\psi_b} = \psi_{b0};$$

$$a_{3pA1} = \frac{\sum_{i=1}^{n(A)} S_A r_A \operatorname{tg} \gamma_A (1 + \cos(\psi_b + i\Delta_{\psi})) + n(A) V_{0A}}{\beta};$$

$$a_{3pA0} = \frac{\mathcal{G}_A f_A}{2\sqrt{p_{00} - p_{A0}}} + \frac{\mathcal{G}_A' f_A'}{2\sqrt{p_{00} - p_{A0}}}.$$
Рассмотрим член $a_{3\psi 0} = \frac{\partial}{\partial \psi} S_A r_A \operatorname{tg} \gamma_A \frac{d \sum_{i=1}^{n(A)} (1 + \cos(\psi_b + i\Delta_{\psi}))}{dt} \left| \psi_b = \psi_{b0} + \psi_{b0} - \psi_{b0} \right|$

В точке разложения члены выражения, стоящего под знаком суммы определяются как $-\sum_{i=1}^{n(A)} \cos(\psi_{b0} + i\Delta_{\psi})$, поскольку дифференцирование по ψ производится дважды: первый раз - когда берется производная по времени, а второй раз - когда берется частная производная по углу ψ_b . В любом случае (см. рис. 2.7) углы, под которыми располагаются осевые, проходящие через центр вращения цилиндра и центры входных отверстий, симметричны относительно начального угла ψ , равного 90°. Поэтому $a_{3\psi0} = 0$.

Для привода Е:

$$S_{E} p_{E0} r_{E} \sin \gamma_{E} \sum_{i=1}^{n(E)} \sin(\theta_{b0} + i\Delta_{\theta}) + \kappa_{E} n(E) S_{E} p_{E} \cos \gamma_{E} + \mu_{rp0E} = \mu_{F0};$$

$$Q_{E0} = \mathcal{P}_{E} f_{E} [p_{00}(t) - p_{E0}]^{\frac{1}{2}};$$

$$Q_{E0} = \mathcal{P}_{E} f_{E} [p_{00}(t) - p_{E0}]^{\frac{1}{2}};$$

$$(2.1.39)$$

$$\mathcal{P}_{E} f_{E} (t) [p_{00} - p_{E0}]^{\frac{1}{2}} = \mathcal{P}_{E}' f_{E}' [p_{E0} - p_{1}]^{\frac{1}{2}} + S_{E} r_{E} \operatorname{tg} \gamma_{E} \frac{d\sum_{i=1}^{n(A)} (1 + \cos(\theta_{b} + i\Delta_{\theta}))}{dt} | \theta_{b} = \theta_{b0}.$$

$$\dot{\theta} = \dot{\theta}_{0}$$

$$\begin{aligned} a_{1\mu0}\delta_{\mu} + a_{1pE0}\delta_{pE} &= a_{1\theta2}\ddot{\delta}_{\theta} + a_{1\theta1}\dot{\delta}_{\theta}; \\ a_{2pE0}\delta_{pE} + a_{2QE0}\delta_{QE} &= a_{2p0}\delta_{p0}; \\ a_{3pE1}\dot{\delta}_{pE} + a_{3pE0}\delta_{pE} &= a_{3\theta0}\delta_{\theta} + a_{3p0}\delta_{p0}. \end{aligned}$$

$$\begin{aligned} a_{1\muF0} &= 1; \ a_{2p0} &= a_{3p0} = \frac{\mathcal{9}_{E}f_{E}}{2\sqrt{p_{00} - p_{E0}}}; \ a_{1\theta2} &= -J_{E}; \\ a_{1\theta1} &= -\eta_{E}; \end{aligned}$$

$$\begin{aligned} a_{1pE0} &= -S_E \bigg[\sin \gamma_E r_E \sum_{i=1}^{n(A)} \sin (\theta_{b0} + i\Delta_{\psi}) + \kappa n(E) \cos \gamma_E \bigg]; \ a_{2pE0} &= \frac{\mathcal{G}_E f_E}{2\sqrt{p_{00} - p_{E0}}}; \\ a_{2QE0} &= -1; \ a_{3\theta0} = -S_E r_E \operatorname{tg} \gamma_E \dot{\theta}_0 \frac{d \sum_{i=1}^{n(A)} (1 + \cos(\theta_b + i\Delta_{\theta}))}{d\theta} \bigg|_{\theta_b} = \theta_{b0}; \\ a_{3pE1} &= \frac{\sum_{i=1}^{n(A)} S_E r_E \operatorname{tg} \gamma_E (1 + \cos(\theta_b + i\Delta_{\theta})) + n(E) V_{0E}}{\beta}; \\ a_{3pE0} &= \frac{\mathcal{G}_E f_E}{2\sqrt{p_{00} - p_{E0}}} + \frac{\mathcal{G}_E' f_E'}{2\sqrt{p_{00} - p_{E0}}}. \end{aligned}$$

Из (2.1.38) и (2.1.40) могут быть получены системы уравнений в операторной форме:

$$a_{1\mu0}\delta_{\mu}(s) + a_{1pA0}\delta_{pA}(s) = a_{1\psi2}s^{2}\delta_{\psi}(s) + a_{1\psi1}s\delta_{\psi}(s);$$

$$a_{2pA0}\delta_{pA}(s) + a_{2QA0}\delta_{QA}(s) = a_{2p0}\delta_{p0}(s);$$

$$a_{3pA1}s\delta_{pA}(s) + a_{3pA0}\delta_{pA}(s) = a_{3\psi0}\delta_{\psi}(s) + a_{3p00}\delta_{p0}(s).$$

$$a_{1\muF0}\delta_{\muF}(s) + a_{1pE0}\delta_{pE}(s) = a_{1\theta2}s^{2}\delta_{\theta}(s) + a_{1\theta1}s\delta_{\theta}(s);$$

$$a_{2pE0}\delta_{pE}(s) + a_{2QE0}\delta_{QE}(s) = a_{2p0}\delta_{p0}(s);$$

$$(2.1.42)$$

$$+ a_{3pE1}s\delta_{pE}(s) + a_{3pE0}\delta_{pE}(s) = a_{3p00}\delta_{p0}(s) + a_{3\theta0}\delta_{\theta}(s).$$

Данные системы могут быть разрешены относительно величин δ_{μ} , δ_{QA} , δ_{pA} и $\delta_{\mu F}$, δ_{QE} , δ_{pE} .

2.1.3. Модель гидронасоса с силовым агрегатом

Рассмотренный гидропривод (рис. 2.2) является обратимым и может использоваться в качестве гидронасоса. Принудительное вращение его выходного вала при этом обеспечивает нагнетание жидкости в трубопровод в направлении обратном тому, которое реализуется в гидроприводе. В аксиальных гидронасосах изменение угла наклона диска позволяет регулировать их производительность. Данное обстоятельство обусловливает наличие еще одного входного воздействия в систему. В качестве приводного двигателя гидронасосов в обычно используется электродвигатель.

С учетом того, что функционирование привода было подробно рассмотрено в п. 2.1.2, при разработке модели гидронасоса ограничимся кратким изложением итогов. При этом будем использовать следующие допущения:

жидкость является несжимаемой;

влияние упругости стенок трубопроводов пренебрежимо мало;

дросселирование рабочей жидкости осуществляется на выходном фильтре гидронасоса, и идролиниях через который она прокачивается.

Уравнение моментов для вала гидронасоса имеет вид:

$$\mu_{h} = Sp_{\phi} \sin \gamma \sum_{i=1}^{n} \sin(\phi_{b} + i\Delta_{\phi}) + \kappa n Sp_{\phi} \cos \gamma + \mu_{\rm rp0} + J\ddot{\phi} + \eta\dot{\phi}, \qquad (2.1.43)$$

где *S* - площадь поршня; *n* - количество цилиндров, подключенных к выходному трубопроводу; p_{ϕ} - давление в рабочих полостях, одинаковое для всех цилиндров, задействованных одновременно на выталкивание жидкости; γ - угол наклона шайбы по отношению к оси вращения выходного вала; μ_{rp0} - начальный момент трения на валу гидронасоса; Δ_{ϕ} - угловой шаг расположения гидроцилиндров; ϕ_b - начальное значение угла ϕ , при котором очередной цилиндр подключается к выходному трубопроводу; κ - коэффициент сухого трения; *J* и η - соответственно, момент инерции и коэффициент вязкого трения в элементах конструкции гидронасоса стержневого узла; μ_h - момент внешних сил, действующих на насос со стороны электродвигателя.

Быстродействие любого двигателя (постоянного тока, асинхронного переменного тока, синхронных электромашин и т.п.) обусловлено быстродействием электрических цепей и инерционностью механической части. При составлении уравнений электродвигателя мы абстрагируемся от его типа и принимаем допущение, что его инерционность обусловлена механической постоянной времени. Момент, создаваемый на валу двигателя любого типа, уравновешивается в данном случае моментом на входном валу насоса. В случае, если двигатель подключен к валу насоса непосредственно, то описывающее его уравнение принимает вид:

$$T_{_{M}}\ddot{\phi} + \dot{\phi} = k_{_{U}}U - k_{_{\mu}}\mu_{_{h}},$$
 (2.1.44)

где T_{M} - механическая постоянная времени, обусловленная инерционностью якоря; k_{U} - коэффициент передачи по управляющему сигналу с размерностью $\left[\frac{1}{e d.ynp.cueh. cek}\right]$; k_{μ} - коэффициент передачи по моменту с размерно-стью $\left[\frac{1}{H \cdot m \cdot cek}\right]$.

Подставляя (2.1.43) в зависимость (2.1.44), получим:

$$\left[Sp_0\sin\gamma\sum_{i=1}^n\sin\left(\phi_b+i\varDelta_\phi\right)+\kappa nSp_0\cos\gamma+\mu_{\rm Tp0}+J\ddot{\phi}+\eta\dot{\phi}\right]k_\mu+T_{\rm M}\ddot{\phi}+\dot{\phi}=k_UU. \quad (2.1.45)$$

Суммарный объем, цилиндров, пополняющих напорный трубопровод, определяется зависимостью

$$V = \sum_{i=1}^{n(A)} Sr \operatorname{tg} \gamma \left(\phi_b + i \Delta_\phi \right) + V_0 , \qquad (2.1.46)$$

где V₀ - неизменяемый объем гидронасоса с прилегающим к нему участком напорного трубопровода.

Объемный расход жидкости через выходной фильтр определяется в виде:

$$Q_{\phi} = \mathcal{G}_{\phi} f_{\phi} \Big[p_{\phi} - p_0 \Big]^{\frac{1}{2}}, \qquad (2.1.47)$$

где Q_{ϕ} - объемный расход рабочего тела через фильтр; \mathcal{G}_{ϕ} - параметр, зависящий от коэффициент расхода через фильтр трубопровод и плотности жидкости; f_{ϕ} - площадь эффективного проходного сечения фильтра; p_{ϕ} - p_1 - перепад давления на фильтре.

Объемный расход без учета сжимаемости жидкости каждый момент определяется изменением объема выталкиваемой жидкости [54, 55, 56, 57, 58]

$$Q_{\phi} = \frac{d \sum_{i=1}^{n(\mathcal{A})} Sr \operatorname{tg} \gamma \left[1 + \cos(\phi_b + i\Delta_{\phi})\right]}{dt},$$

откуда

$$\mathcal{G}_{\phi}f_{\phi}\left[p_{\phi}-p_{0}\right]^{\frac{1}{2}} = Sr \operatorname{ctg} \gamma \sum_{i=1}^{n(A)} \left[1+\cos\left(\phi_{b}+i\Delta_{\phi}\right)\right] \frac{d\gamma}{dt} + Sr \operatorname{tg} \gamma \sum_{i=1}^{n(A)} \sin\left(\phi_{b}+i\Delta_{\phi}\right) \frac{d\phi}{dt}, \quad (2.1.48)$$
где $Sr \operatorname{tg} \gamma \sum_{i=1}^{n(A)} \sin\left(\phi_{b}+i\Delta_{\phi}\right) -$ рабочий объем гидронасоса.

Уравнения (2.1.45), (2.1.47) и (2.1.48) полностью описывают динамику гидронасоса. Входными воздействиями в системе являются управляющий сигнал U, угол γ наклона бока цилиндров и расходы рабочего тела через выходные дроссели Q_i . Выходными параметрами являются давления в полостях цилиндров p_{ϕ} и магистрали p_0 , а также скорость $\dot{\phi}$ вала насоса.

Из (2.1.45), (2.1.47) и (2.1.48) путем разложения в ряд Тейлора могут быть получены система в отклонениях и система, описывающая установившийся режим работы гидронасоса. Точка разложения выбирается по вышеизложенному принципу. Уравнения равновесия имеют вид [59, 60, 61, 62, 63]:

$$\begin{split} \left[Sp_{00} \sin \gamma_0 \sum_{i=1}^n \sin(\phi_{b0} + i\Delta_{\phi}) + \kappa n Sp_{00} \cos \gamma_0 + \mu_{rp0} + \eta \dot{\phi}_0 \right] k_{\mu} + \dot{\phi}_0 = k_U U_0; \\ Q_{\phi 0} = \mathcal{G}_{\phi} f_{\phi} \Big[p_{\phi 0} - p_{00} \Big]^{\frac{1}{2}}; \\ \mathcal{G}_{\phi} f_{\phi} \Big[p_{\phi 0} - p_{00} \Big]^{\frac{1}{2}} = Sr \operatorname{tg} \gamma_0 \sum_{i=1}^{n(A)} \sin(\phi_{b0} + i\Delta_{\phi}) \dot{\phi}_0, \end{split}$$
(2.1.49)

где $U_0, \gamma_0, Q_{\phi 0}, p_{\phi 0}, p_{00} \dot{\phi}_0$ - начальные значения соответствующих параметров.

Уравнение в отклонениях имеет вид:

$$a_{1\phi2}\ddot{\delta}_{\phi} + a_{1\phi1}\dot{\delta}_{\phi} + a_{1p\phi0}\delta_{p\phi} = a_{1U0}\delta_{U} + a_{1\gamma0}\delta_{\gamma};$$

$$a_{2p\phi0}\delta_{p\phi} + a_{2p00}\delta_{p0} = a_{2Q\phi0}\delta_{Q\phi};$$

$$a_{3\phi1}\dot{\delta}_{\phi} + a_{3p\phi0}\delta_{p\phi} + a_{3p00}\delta_{p0} = a_{2\gamma1}\dot{\delta}_{\gamma} + a_{2\gamma0}\delta_{\gamma},$$
(2.1.50)

где

$$a_{1U0} = k_U; \ a_{1\gamma0} = -\left[Sp_{\phi0}\cos\gamma_0\sum_{i=1}^n\sin(\phi_{b0} + i\Delta_\phi) + \kappa nSp_{\phi0}\sin\gamma_0\right]k_\mu;$$
$$a_{1\phi2} = Jk_\mu + T_\mu; \ a_{1\phi1} = \eta k_\mu + 1; \ a_{1p\phi0} = Sk_\mu\cos\gamma_0\sum_{i=1}^n\sin(\phi_{b0} + i\Delta_\phi);$$

$$\begin{aligned} a_{2Q\phi0} &= 1; \ a_{2p\phi0} = \frac{1}{2\mathcal{P}_{\phi}f_{\phi}\sqrt{p_{\phi0} - p_{00}}}; \ a_{2p00} = -\frac{1}{2\mathcal{P}_{\phi}f_{\phi}\sqrt{p_{\phi0} - p_{00}}}; \\ a_{3\gamma1} &= Sr \operatorname{ctg} \gamma_0 \sum_{i=1}^{n(A)} \left[1 + \cos(\phi_{b0} + i\Delta_{\phi}) \right]; \ a_{3\gamma0} = -Sr \operatorname{ctg} \gamma_0 \sum_{i=1}^{n(A)} \sin(\phi_{b0} + i\Delta_{\phi}) \dot{\phi}_0; \\ a_{3p\phi0} &= -\frac{1}{2\mathcal{P}_{\phi}f_{\phi}\sqrt{p_{\phi0} - p_{00}}}; \ a_{3p00} = \frac{1}{2\mathcal{P}_{\phi}f_{\phi}\sqrt{p_{\phi0} - p_{00}}}; \\ a_{3\phi1} &= Sr \operatorname{tg} \gamma_0 \sum_{i=1}^{n(A)} \sin(\phi_{b0} + i\Delta_{\phi}). \end{aligned}$$

В операторной форме (2.1.50) выглядит следующим образом [64]:

$$a_{1\phi 2}s^{2}\delta_{\phi}(s) + a_{1\phi 1}s\delta_{\phi}(s) + a_{1\rho\phi 0}\delta_{\rho\phi}(s) = a_{1U0}\delta_{U}(s) + a_{1\gamma 0}\delta_{\gamma}(s);$$

$$a_{2\rho\phi 0}\delta_{\rho\phi}(s) + a_{2\rho00}\delta_{\rho0}(s) = a_{2Q\phi 0}\delta_{Q\phi}(s);$$

$$a_{3\phi 1}s\delta_{\phi}(s) + a_{3\rho\phi 0}\delta_{\rho\phi}(s) + a_{3\rho00}\delta_{\rho0}(s) = a_{3\gamma 1}s\delta_{\gamma}(s) + a_{3\gamma 0}\delta_{\gamma}(s).$$
(2.1.51)

Следует отметить, что в (2.1.51) регулируемыми параметрами являются: скорость $\dot{\phi}$ вращения вала гидронасоса;

давление p_{ϕ} в рабочих полостях цилиндра, задействованных на выталкивание рабочей жидкости в выходной трубопровод;

давление p_0 в выходном напорном трубопроводе.

Управляющими воздействиями являются:

угол у поворота пластины гидронасоса;

управляющий сигнал U на входе в двигатель.

Выходной расход Q_{ϕ} является возмущающим воздействием. При необходимости он может поддерживаться на заданном уровне при неконтролируемой скорости вращения вала.

В том случае, если насос подключается к валу двигателя через механический редуктор с коэффициентом понижения *v*, то без учета моментов инерции и коэффициентов вязкого трения в подвижных частях самого редуктора, зависимости (2.1.45), (2.1.46), (2.1.49) (соотношение (2.1.47 при этом не меняется) и коэффициенты линеаризованных уравнений выглядят следующим образом:

$$\begin{bmatrix} Sp_{\varphi} \sin\gamma \sum_{i=1}^{n} \sin(\psi\varphi_{b} + i\Delta_{\varphi}) + \kappa n Sp_{\varphi} \cos\gamma + \mu_{mp0} + J\psi\dot{\varphi} + \eta\psi\dot{\varphi} \end{bmatrix} \cdot (2.1.52)$$

$$\cdot k_{\mu}\psi + T_{\mathcal{M}}\dot{\varphi} + \dot{\varphi} = k_{U}U;$$

$$\vartheta_{\varphi}f_{\varphi} \Big[p_{\varphi} - p_{0} \Big]^{\frac{l}{2}} = Sr ctg \gamma \sum_{i=1}^{n(\mathcal{A})} \Big[1 + \cos(\psi\varphi_{b} + i\Delta_{\varphi}) \Big] \frac{d\gamma}{dt} + (2.1.53)$$

$$+ Sr \psi tg \gamma \sum_{i=1}^{n(\mathcal{A})} \sin(\varphi_{b}\psi + i\Delta_{\varphi}) \frac{d\varphi}{dt};$$

$$\begin{bmatrix} Sp_{\phi0} \sin\gamma_{0} \sum_{i=1}^{n} \sin(\phi_{b0}\psi + i\Delta_{\phi}) + \kappa n Sp_{\phi0} \cos\gamma_{0} + \mu_{rp0} + \eta\dot{\varphi}_{0} \Big] k_{\mu}\psi + \dot{\varphi}_{0} = k_{U}U_{0};$$

$$\vartheta_{\varphi}f_{\phi} \Big[p_{\phi0} - p_{00} \Big]^{\frac{l}{2}} = Sr tg \gamma_{0} \sum_{i=1}^{n(\mathcal{A})} \sin(\phi_{b0}\psi + i\Delta_{\phi}) \dot{\phi}_{0};$$

$$a_{1U0} = k_{U}; a_{1\gamma0} = - \Big[Sp_{0} \cos\gamma_{0} \sum_{i=1}^{n} \sin(\phi_{b0}\psi + i\Delta_{\phi}) + \kappa n Sp_{\phi0} \sin\gamma_{0} \Big] k_{\mu}\psi;$$

$$a_{1\phi2} = Jk_{\mu}v^{2} + T_{\mu}; \ a_{1\phi1} = \eta k_{\mu}v^{2} + 1; \ a_{1\rho00} = Sk_{\mu}v\cos\gamma_{0}\sum_{i=1}^{n}\sin(\phi_{b0}v + i\Delta_{\phi});$$

$$\begin{aligned} a_{2Q\phi0} &= 1; \ a_{2p\phi0} = \frac{1}{29_{\phi} f_{\phi} \sqrt{p_{\phi0} - p_{00}}}; \ a_{2p00} = -\frac{1}{29_{\phi} f_{\phi} \sqrt{p_{\phi0} - p_{00}}}; \\ a_{3\gamma1} &= -Sr \operatorname{ctg} \gamma_0 \sum_{i=1}^{n(A)} \left[1 + \cos(\phi_{b0} v + i\Delta_{\phi}) \right]; \ a_{3\gamma0} = -Sr \operatorname{ctg} \gamma_0 \sum_{i=1}^{n(A)} \sin(\phi_{b0} v + i\Delta_{\phi}) \dot{\phi}_0; \\ a_{3p\phi0} &= -\frac{1}{29_{\phi} f_{\phi} \sqrt{p_{\phi0} - p_{00}}}; \ a_{3p00} = \frac{1}{29_{\phi} f_{\phi} \sqrt{p_{\phi0} - p_{00}}}; \\ a_{3\phi1} &= Sr \operatorname{tg} \gamma_0 \sum_{i=1}^{n(A)} \sin(\phi_{b0} v + i\Delta_{\phi}). \end{aligned}$$

Следует также отметить, что при необходимости в (2.1.48) может быть также учтена сжимаемость жидкости, но влияние указанного фактора при значительном текущем изменении объемов цилиндров, работающих на выталкивание жидкости, является весьма незначительным, в отличие, например, от линейного двигателя, где изменение объема от сжимаемости сопоставимо с влиянием малых приращений хода штока.

2.2. Структурные схемы компонентов силовой гидравлической системы одноковшового экскаватора

Рассмотрим системы уравнений в операторной форме, описывающую динамику компонентов силовой гидросистемы одноковшового экскаватора.

2.2.1. Построение структурной схемы линейного гидропривода

Из системы уравнений (2.1.21), представленной в операторной форме, и описывающей линейный гидропривод, может быть получена система уравнений в виде передаточных функций. Для этого разрешим указанную систему относительно приращений регулируемых параметров δ_{p1} , δ_{p2} , δ_Q и δ_{uu} :

$$\begin{split} &\delta_{Q} = W_{p0,Q}(s)\delta_{p0} + W_{f1,Q}(s)\delta_{f1} + W_{f2,Q}(s)\delta_{f2} + W_{L3,Q}(s)\delta_{L3}; \\ &\delta_{p1} = W_{p0,p1}(s)\delta_{p0} + W_{f1,p1}(s)\delta_{f1} + W_{f2,p1}(s)\delta_{f2} + W_{L3,p1}(s)\delta_{L3}; \\ &\delta_{p2} = W_{p0,p2}(s)\delta_{p0} + W_{f1,p2}(s)\delta_{f1} + W_{f2,p2}(s)\delta_{f2} + W_{L3,p2}(s)\delta_{L3}; \\ &\delta_{uu} = W_{p0,uu}(s)\delta_{p0} + W_{f1,uu}(s)\delta_{f1} + W_{f2,uu}(s)\delta_{f2} + W_{L3,uu}(s)\delta_{L3}, \end{split}$$

где

$$\begin{split} W_{p0,Q}(s) &= \frac{\Delta_{p0,Q}}{\Delta}; \ W_{f1,Q}(s) = \frac{\Delta_{f1,Q}}{\Delta}; \ W_{f2,Q}(s) = \frac{\Delta_{f2,Q}}{\Delta}; \ W_{L3,Q}(s) = \frac{\Delta_{L3,Q}}{\Delta}; \\ W_{p0,p1}(s) &= \frac{\Delta_{p0,p1}}{\Delta}; \ W_{f1,p1}(s) = \frac{\Delta_{f1,p1}}{\Delta}; \ W_{f2,p1}(s) = \frac{\Delta_{f2,p1}}{\Delta}; \ W_{L3,p1}(s) = \frac{\Delta_{L3,p1}}{\Delta}; \\ W_{p0,p2}(s) &= \frac{\Delta_{p0,p2}}{\Delta}; \ W_{f1,p2}(s) = \frac{\Delta_{f1,p2}}{\Delta}; \ W_{f2,p2}(s) = \frac{\Delta_{f2,p2}}{\Delta}; \ W_{L3,p2}(s) = \frac{\Delta_{L3,p2}}{\Delta}; \\ W_{p0,u}(s) &= \frac{\Delta_{p0,u}}{\Delta}; \ W_{f1,L3}(s) = \frac{\Delta_{f1,u}}{\Delta}; \ W_{f2,L3}(s) = \frac{\Delta_{f2,u}}{\Delta}; \ W_{L3,u}(s) = \frac{\Delta_{L3,u}}{\Delta}; \\ \Delta_{p0,Q}(s) &= \begin{vmatrix} a_{1p00} & a_{1p10} & a_{1p20} & 0 \\ a_{2p00} & a_{2p11}s + a_{2p10} & 0 & 0 \\ a_{3p00} & 0 & a_{3p21}s + a_{2p20} & 0 \\ 0 & a_{4p10} & a_{4p20} & a_{4u0} \end{vmatrix}; \end{split}$$

$$\begin{split} \mathcal{A}_{j1,\varrho}(s) &= \begin{vmatrix} a_{1j10} & a_{1p10} & a_{1p20} & 0 \\ a_{2j10} & a_{2p11}s + a_{2p10} & 0 & 0 \\ 0 & 0 & a_{3p21}s + a_{2p20} & 0 \\ 0 & a_{4p10} & a_{4p20} & a_{4u0} \end{vmatrix}; \\ \mathcal{A}_{j2,\varrho}(s) &= \begin{vmatrix} a_{1j20} & a_{1p10} & a_{1p20} & 0 \\ 0 & a_{2p11}s + a_{2p10} & 0 & 0 \\ a_{3j20} & 0 & a_{3p21}s + a_{2p20} & 0 \\ 0 & a_{4p10} & a_{4p20} & a_{4u0} \end{vmatrix}; \\ \mathcal{A}_{L3,\varrho}(s) &= \begin{vmatrix} 0 & a_{1p10} & a_{1p20} & 0 \\ a_{2L31}s + a_{2L30} & a_{2p11}s + a_{2p10} & 0 & 0 \\ a_{3L31}s + a_{3L30} & 0 & a_{3p21}s + a_{2p20} & 0 \\ 0 & a_{4p10} & a_{4p20} & a_{4u0} \end{vmatrix}; \\ \mathcal{A}_{\rho0,\rho1}(s) &= \begin{vmatrix} a_{1\varrho0} & a_{1\rho00} & a_{1\rho20} & 0 \\ 0 & a_{2\rho00} & 0 & 0 \\ 0 & a_{3\rho00} & a_{3p21}s + a_{2p20} & 0 \\ 0 & 0 & a_{4\rho20} & a_{4u0} \end{vmatrix}; \\ \mathcal{A}_{f1,\rho1}(s) &= \begin{vmatrix} a_{1\varrho0} & a_{1f10} & a_{1\rho20} & 0 \\ 0 & 0 & a_{4\rho20} & a_{4u0} \\ 0 & 0 & a_{4\rho20} & a_{4u0} \end{vmatrix}; \\ \mathcal{A}_{L3,\rho1}(s) &= \begin{vmatrix} a_{1\varrho0} & a_{1\rho20} & a_{1\rho20} & 0 \\ 0 & 0 & a_{4\rho20} & a_{4u0} \\ 0 & 0 & a_{4\rho20} & a_{4u0} \end{vmatrix}; \end{split}$$

$$\begin{split} \mathcal{A}_{p0p2}(s) &= \begin{vmatrix} a_{120} & a_{1p10} & a_{1p00} & 0 \\ 0 & a_{2p11}s + a_{2p10} & a_{2p00} & 0 \\ 0 & 0 & a_{3p00} & 0 \\ 0 & a_{4p10} & 0 & a_{4u0} \end{vmatrix}; \\ \mathcal{A}_{f1,p2}(s) &= \begin{vmatrix} a_{120} & a_{1p10} & a_{1f10} & 0 \\ 0 & a_{2p11}s + a_{2p10} & a_{2f10} & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & a_{4p10} & 0 & a_{4u0} \end{vmatrix}; \\ \mathcal{A}_{f2,p2}(s) &= \begin{vmatrix} a_{120} & a_{1p10} & a_{1f20} & 0 \\ 0 & a_{2p11}s + a_{2p10} & 0 & 0 \\ 0 & 0 & a_{3f20} & 0 \\ 0 & 0 & a_{3f20} & 0 \\ 0 & 0 & a_{3L3}s + a_{3L30} & 0 \\ 0 & 0 & a_{3p21}s + a_{2p20} & a_{3p00} \\ 0 & 0 & a_{3p21}s + a_{2p20} & a_{3p00} \\ 0 & 0 & a_{3p21}s + a_{2p20} & a_{3p00} \\ 0 & 0 & a_{3p21}s + a_{2p20} & a_{3p00} \\ 0 & 0 & a_{3p21}s + a_{2p20} & a_{3p00} \\ 0 & 0 & a_{3p21}s + a_{2p20} & 0 \\ \end{vmatrix}; \\ \mathcal{A}_{f1,u}(s) &= \begin{vmatrix} a_{120} & a_{1p10} & a_{1p20} & a_{1f10} \\ 0 & a_{2p11}s + a_{2p10} & 0 & a_{2p10} \\ 0 & 0 & a_{3p21}s + a_{2p20} & 0 \\ \end{vmatrix}; \\ \mathcal{A}_{f2,u}(s) &= \begin{vmatrix} a_{120} & a_{1p10} & a_{1p20} & a_{1f10} \\ 0 & a_{2p11}s + a_{2p10} & 0 & a_{2f10} \\ 0 & 0 & a_{3p21}s + a_{2p20} & 0 \\ \end{vmatrix}; \end{split}$$

$$\Delta_{L3,u}(s) = \begin{vmatrix} a_{1Q0} & a_{1p10} & a_{1p20} & 0 \\ 0 & a_{2p11}s + a_{2p10} & 0 & a_{2L31}s + a_{2L30} \\ 0 & 0 & a_{3p21}s + a_{2p20} & a_{2L31}s + a_{2L30} \\ 0 & a_{4p10} & a_{4p20} & 0 \end{vmatrix}$$

•

Система (2.2.1) может быть представлена в виде структурной схемы [64, 75, 76, 77], приведенной на рис. 2.5.

Рисунок 2.5. - Структурная схема линейного гидропривода

2.2.2. Построение структурной схемы гидравлического привода с объемным регулированием

Из (2.1.41) могут быть получены уравнения в виде передаточных функций для привода *А*:

$$\delta_{\mu} = W_{p0,\mu}(s)\delta_{p0} + W_{\psi,\mu}(s)\delta_{\psi};$$

$$\delta_{pA} = W_{p0,pA}(s)\delta_{p0} + W_{\psi,pA}(s)\delta_{\psi};$$

$$\delta_{QA} = W_{p0,QA}(s)\delta_{p0} + W_{\psi,QA}(s)\delta_{\psi},$$

(2.2.56)

где

$$\begin{split} \mathcal{A}_{A}(s) &= \begin{vmatrix} a_{1\mu0} & a_{1\rhoA0} & 0 \\ 0 & a_{2pA0} & a_{2QA0} \\ 0 & a_{3pA1}s + a_{3pA0} & 0 \end{vmatrix}; \\ \mathcal{W}_{p0,\mu}(s) &= \frac{\begin{vmatrix} 0 & a_{1pA0} & 0 \\ a_{2p00} & a_{2pA0} & a_{2QA0} \\ a_{3p00} & a_{3pA1}s + a_{3pA0} & 0 \\ 0 & a_{2pA0} & a_{2QA0} \\ a_{4}(s) \end{aligned}; \\ \mathcal{W}_{\psi,\mu} &= \frac{\begin{vmatrix} a_{1\mu2}s^{2} + a_{1\psi1}s & a_{1pA0} & 0 \\ 0 & a_{2pA0} & a_{2QA0} \\ a_{3\psi0} & a_{3pA1}s + a_{3pA0} & 0 \\ 0 & a_{2pA0} & a_{2QA0} \\ a_{3\psi0} & a_{3pA1}s + a_{3pA0} & 0 \\ 0 & 0 & a_{2QA0} \\ a_{4}(s) \end{aligned}; \\ \mathcal{W}_{p0,pA}(s) &= \frac{\begin{vmatrix} a_{1\mu0} & 0 & 0 \\ 0 & a_{2pA0} & a_{2QA0} \\ 0 & a_{3\psi0} & 0 \\ 0 & 0 & a_{2QA0} \\ 0 & a_{3\psi0} & 0 \\ 0 & a_{2pA0} & a_{2QA0} \\ 0 & a_{3\psi0} & 0 \\ 0 & a_{2pA0} & a_{2pA0} \\ 0 & a_{3\psi0} & 0 \\ 0 & a_{2pA0} & a_{2pA0} \\ 0 & a_{3\psi0} & 0 \\ 0 & a_{2pA0} & a_{2pA0} \\ 0 & a_{3\psi0} & 0 \\ 0 & a_{2pA0} & a_{2pA0} \\ 0 & a_{3\psi0} & 0 \\ 0 & a_{2pA0} & a_{2pA0} \\ 0 & a_{3\psi0} & 0 \\ 0 & a_{2pA0} & a_{2pA0} \\ 0 & a_{3\psi0} & 0 \\ 0 & a_{2pA0} & a_{2pA0} \\ 0 & a_{2pA0} & a_{2pA0} \\ 0 & a_{3\psi0} & 0 \\ 0 & a_{3pA1}s + a_{3pA0} & a_{3p00} \\ 0 & a_{3A}s + a_{3A}s & a_{3A}s \\ 0 & a_{3A}s + a_{3A}s & a_{3A}s \\ 0 & a_{3A}s & a_{3A}s \\ 0 & a_{3A}s & a_{3A}s \\ 0 &$$

$$W_{p0,QA}(s) = rac{egin{pmatrix} a_{1\mu0} & a_{1pA0} & a_{1\psi2}s^2 + a_{1\psi1}s \ 0 & a_{2pA0} & 0 \ 0 & a_{3pA1}s + a_{3pA0} & a_{3\zeta0} \ \hline \Delta_A(s) \ \end{pmatrix}.$$

Из (2.1.42) могут быть получены уравнения в виде передаточных функций для привода *E*:

$$\delta_{\mu F} = W_{p0,\mu F}(s)\delta_{p0} + W_{\theta,\mu F}(s)\delta_{\theta};$$

$$\delta_{pE} = W_{p0,pE}(s)\delta_{p0} + W_{\theta,pE}(s)\delta_{\theta};$$

$$\delta_{QE} = W_{p0,QE}(s)\delta_{p0} + W_{\theta,QE}(s)\delta_{\theta},$$

(2.2.57)

где

$$\begin{split} \mathcal{A}_{E}(s) &= \begin{vmatrix} a_{1\mu F0} & a_{1pE0} & 0 \\ 0 & a_{2pE0} & a_{2QE0} \\ 0 & a_{3pE1}s + a_{3pE0} & 0 \end{vmatrix}; \\ W_{p0,\mu F}(s) &= \frac{\begin{vmatrix} 0 & a_{1pE0} & 0 \\ a_{2p00} & a_{2pE0} & a_{2QE0} \\ a_{3p00} & a_{3pE1}s + a_{3pE0} & 0 \\ 0 & a_{2pE0} & a_{2QE0} \\ a_{2\theta0} & a_{3pE1}s + a_{3pE0} & 0 \\ \end{vmatrix}; \\ W_{\theta,\mu F} &= \frac{\begin{vmatrix} a_{1\theta 2}s^{2} + a_{1\theta 1}s & a_{1pE0} & 0 \\ 0 & a_{2pE0} & a_{2QE0} \\ a_{3\theta0} & a_{3pE1}s + a_{3pE0} & 0 \\ \end{vmatrix}; \\ W_{p0,pE}(s) &= \frac{\begin{vmatrix} a_{1\mu F0} & 0 & 0 \\ 0 & a_{2p00} & a_{2QE0} \\ 0 & a_{3p00} & 0 \end{vmatrix}; \\ W_{\mu,pA}(s) &= \frac{\begin{vmatrix} a_{1\mu F0} & a_{1\theta 2}s^{2} + a_{1\theta 1}s & 0 \\ 0 & 0 & a_{2QE0} \\ 0 & a_{3\theta0} & 0 \\ \end{vmatrix}; \\ W_{p0,pE}(s) &= \frac{\begin{vmatrix} a_{1\mu F0} & a_{1pE0} & 0 \\ 0 & a_{2pE0} & a_{2p00} \\ 0 & a_{3pE1}s + a_{3pE0} & 0 \\ 0 & 0 & a_{2QE0} \\ 0 & 0 & a_{2QE0} \\ 0 & 0 & 0 \\ \end{vmatrix}; \\ W_{p0,QE}(s) &= \frac{\begin{vmatrix} a_{1\mu F0} & a_{1pE0} & 0 \\ 0 & a_{2pE0} & a_{2p00} \\ 0 & a_{3pE1}s + a_{3pE0} & a_{2p00} \\ 0 & a_{2p00} \\ 0 & a_{2pE0} & a_{2p00} \\ \end{vmatrix};$$

$$W_{p0,QE}(s) = \frac{\begin{vmatrix} a_{1\mu F0} & a_{1pE0} & a_{1\theta 2}s^2 + a_{1\theta 1}s \\ 0 & a_{2pE0} & 0 \\ 0 & a_{3pE1}s + a_{3pE0} & a_{3\zeta 0} \end{vmatrix}}{\Delta_E(s)}$$

Структурная схема гидропривода с объемным регулированием представлена на рис. 2.6.

Рисунок 2.6. - Структурная схема гидропривода с объемным регулированием

Входными воздействиями в системе являются давление во входном трубопроводе p0 и углы поворота валов ψ , θ . Выходными величинами являются расходы рабочей жидкости Q_A , Q_E , моменты на валах μ , μ_F , а также давления в полостях гидродвигателей p_A , p_E . Одна из выходных величин является неконтролируемой с помощью двух управляющих воздействий. Выбор может быть осуществлен по критерию сложности соответствующего датчика, например датчика расхода или датчика момента.

2.2.3. Построение структурной схемы гидронасоса

Из системы уравнений (2.1.51), представленной в операторной форме, и описывающей гидронасос, может быть получена система уравнений в виде пе-

64

редаточных функций. Для этого разрешим указанную систему относительно приращений регулируемых параметров δ_{ϕ} и δ_{p0} :

$$\begin{split} \delta_{\phi} &= W_{U,\phi}(s)\delta_{U} + W_{\gamma,\phi}(s)\delta_{\gamma} + W_{Q,\phi}(s)\delta_{Q};\\ \delta_{p\phi} &= W_{U,p\phi}(s)\delta_{U} + W_{\gamma,p\phi}(s)\delta_{\gamma} + W_{Q,p\phi}(s)\delta_{Q};\\ \delta_{p0} &= W_{U,p0}(s)\delta_{U} + W_{\gamma,p0}(s)\delta_{\gamma} + W_{Q,p0}(s)\delta_{Q}, \end{split}$$
(2.2.4)

где

$$\begin{split} W_{U,\rho 0} = \frac{\begin{vmatrix} a_{1\rho 2}s^2 + a_{1\rho 1}s & a_{1\rho \phi 0}s & 0 \\ 0 & a_{2\rho \phi 0} & a_{2\rho 00} \\ a_{3\rho 1}s & a_{3\rho 0} & a_{3\rho 00} \end{vmatrix}}{a_{3\rho 0} & a_{3\rho 00} \end{vmatrix}; \\ W_{U,\phi} = \frac{\begin{vmatrix} 1 & a_{1\rho \phi 0}s & 0 \\ 0 & a_{2\rho \phi 0} & a_{2\rho 00} \\ 0 & a_{3\rho \phi 0} & a_{3\rho 00} \end{vmatrix}}{A_{\phi}}; \\ W_{U,\rho \phi} = \frac{\begin{vmatrix} 0 & a_{1\rho \phi 0}s & 0 \\ a_{2\rho \phi 0} & a_{2\rho 00} \\ 0 & a_{3\rho \phi 0} & a_{3\rho 00} \\ 0 & a_{3\rho \phi 0} & a_{3\rho 00} \\ 0 & a_{3\rho \phi 0} & a_{3\rho 00} \end{vmatrix}}{A_{\phi}}; \\ W_{U,\rho \phi} = \frac{\begin{vmatrix} a_{1\rho 2}s^2 + a_{1\rho 1}s & 1 & 0 \\ 0 & 0 & a_{2\rho 00} \\ a_{3\rho 1}s & a_{3\rho 1}s + a_{3\rho 0} & a_{3\rho 00} \\ A_{\phi} \end{bmatrix}; \\ W_{U,\rho 0} = \frac{\begin{vmatrix} a_{1\rho 2}s^2 + a_{1\rho 1}s & a_{1\rho 0} & 0 \\ 0 & 0 & a_{2\rho 00} \\ a_{3\rho 1}s & a_{3\rho 1}s + a_{3\rho 0} & a_{3\rho 00} \\ A_{\phi} \end{bmatrix}; \\ W_{U,\rho 0} = \frac{\begin{vmatrix} a_{1\rho 2}s^2 + a_{1\rho 1}s & a_{1\rho 0} & 0 \\ 0 & 0 & a_{2\rho 0} \\ a_{3\rho 1}s & a_{3\rho 1}s + a_{3\rho 0} \\ A_{\phi} \end{bmatrix}; \\ W_{U,\rho 0} = \frac{\begin{vmatrix} a_{1\rho 2}s^2 + a_{1\rho 1}s & a_{1\rho 0}s & 0 \\ 0 & a_{2\rho 0} & a_{3\rho 0} \\ A_{\phi} \end{bmatrix}; \\ W_{U,\rho 0} = \frac{\begin{vmatrix} a_{1\rho 2}s^2 + a_{1\rho 1}s & a_{1\rho 0}s & 0 \\ 0 & a_{2\rho 0} & 0 \\ a_{3\rho 1}s & a_{3\rho 0} & a_{3\rho 1}s + a_{3\rho 0} \\ A_{\phi} \end{bmatrix}; \\ W_{U,\rho 0} = \frac{\begin{vmatrix} a_{1\rho 2}s^2 + a_{1\rho 1}s & a_{1\rho 0}s & a_{1\rho 0} \\ A_{\phi} \\ W_{U,\rho 0} = \frac{\begin{vmatrix} a_{1\rho 2}s^2 + a_{1\rho 1}s & a_{1\rho 0}s & 0 \\ 0 & a_{2\rho 0} & 0 \\ a_{3\rho 1}s & a_{3\rho 0} & a_{3\rho 1}s + a_{3\rho 0} \\ A_{\phi} \\ W_{U,\rho 0} = \frac{\begin{vmatrix} a_{1\rho 2}s^2 + a_{1\rho 1}s & a_{1\rho 0}s & 0 \\ 0 & a_{2\rho 0} & a_{2\rho 0} \\ A_{\phi} \\ W_{U,\rho 0} = \frac{\begin{vmatrix} a_{1\rho 2}s^2 + a_{1\rho 1}s & a_{1\rho 0}s & 0 \\ A_{\phi} \\ W_{U,\rho 0} = \frac{\begin{vmatrix} a_{1\rho 2}s^2 + a_{1\rho 1}s & a_{1\rho 0}s & 0 \\ A_{\phi} \\ W_{U,\rho 0} \\ H_{U,\rho 0} = \frac{\begin{vmatrix} a_{1\rho 2}s^2 + a_{1\rho 1}s & a_{1\rho 0}s & 0 \\ A_{\phi} \\ W_{U,\rho 0} \\ H_{U,\rho 0} \\ H$$

Структурная схема [64, 75, 76, 77] системы имеет вид, приведенный на рис. 2.7.

Рисунок 2.7. – Структура гидронасоса с силовым агрегатом

Входными воздействиями в системе, управляющее напряжение U и угол поворота пластины γ . Выходными величинами являются давление в выходном трубопроводе и скорость вращения вала двигателя. Давление во входном трубопроводе p0 и углы поворота валов ψ , θ . Расход Q является возмущающим воздействием.

2.3. Силовая гидросистема одноковшового экскаватора, как многоконтурный объект управления

Исходя из анализа существующих МО, приведённого в разделе 1, а также на основании п. 2.2.1, п. 2.2.2 и п. 2.2.3, силовая гидравлическая система одноковшового экскаватора может быть представлена, как многоконтурный объект управления. Для удобства визуализации «многоконтурности» силовой гидравлической системы одноковшового экскаватора, структурные схемы, показанные на рис.2.5, рис.2.6 и рис.2.7 представим упрощённо, в виде блоков с соответствующими входными воздействиями и выходными, регулируемыми

66

величинами. Общая структурная схема силовой гидравлической системы одноковшового экскаватора показана на рис. 2.8

Рисунок 2.8. – Структура силовой гидросистемы одноковшового экскаватора, как многоконтурный объект управления и измерения

Таким образом, силовая гидросистема одноковшового экскаватора может быть представлена, в виде многоконтурного объекта, при чём, на основании п. 2.2.1, п. 2.2.2 и п. 2.2.3, входящие в неё блоки также являются МО, поскольку в их структуре имеются перекрёстные связи, а собственно структура силовой гидросистемы одноковшового экскаватора является МО, поскольку требует управления множеством выходных величин. На основании аналитического обзора МО и их систем управления, проведённого в разделе 1, можно сделать вывод, что система управления силовой гидросистемой одноковшового экскаватора должна быть цифровой а также иметь несколько уровней иерархии.

2.4. Выводы

1) Разработана математическая модель линейного гидропривода двустороннего действия, из которой получены зависимости для расчета статических режимов и система уравнений, описывающих динамику процессов в приводе.

2) Разработаны математические модели привода с вращением выходного вала, а также гидронасоса, приводимого в движение силовым агрегатом, из них получены зависимости для расчета статических режимов и системы уравнений, описывающих динамику процессов в приводе.

3) Для всех разработанных моделей получены системы линейных уравнений в операторной форме.

4) На основании аналитических математических моделей разработаны структурные схемы линейного гидропривода, гидропривода с объемным управлением и гидронасоса; для всех разработанных структурных схем получены зависимости, связывающие параметры структуры с параметрами линеаризованных уравнений.

5) Построена структурная схема силовой гидравлической системы одно-ковшового экскаватора.

6) Показано, что силовая гидравлическая система одноковшового экскаватора является МО.

7) Получено обоснование применения цифровой системы управления, построенной по иерархическому принципу, для управления силовой гидравлической системой одноковшового экскаватора.

3. МЕТОДЫ ОЦЕНКИ ВРЕМЕННЫХ ЗАДЕРЖЕК, ВОЗНИКАЮЩИХ ПРИ ИНТЕРПРЕТАЦИИ АЛГОРИТМОВ ЦИФРОВОЙ СИСТЕМОЙ УПРАВЛЕНИЯ

В п.1.4 настоящей работы было показано, что функционирование цифровой системы управления может быть описано, как поток последовательного выполнения действий, который разворачивающийся во времени. В совю очередь, выполнение каждого действия может быть интерпретировано, как пребывание в некотором состоянии, каждое из которых может быть охарактеризовано случайным временным интервалом, измеряемым от начала начала выполнения действия до его окончания, а также случайным переходом к выполнению другого действия последовательности, если имеется альтернатива продолжения.

Также, в п.1.4 указано, что для моделирования процесса выполнения управляющего алгоритма, заложенного в цифровую систему управления, может быть использована теория полумарковских процессов, а собственно цель моделирования состоит в определении временных и вероятностных характеристик выполнения последовательности действий.

В п.1.4 (1.3.2) задает полумарковский процесс, который характеризуется полумарковской матрицей H(t) и графом G, описывающим структуру управляющего алгоритма, заложенного в цифровую систему управления. Рассмотрим методы определения стохастических и временных характеристик полумарковсих процессов

3.1 Определения стохастических характеристик полумарковского процесса

Полумарковская матрица H(t) определяет стохастические и временные параметры полумарковского процесса и представляет собой прямое произведение вложенной цепи Маркова P [78, 79, 80, 81, 82, 83, 84] с количеством элементов $J(a) \times J(a)$ на матрицу плотностей распределения F(t) времени пребывания в состояниях полумарковского процесса [82, 83, 84, 85, 86, 87, 88] с количеством элементов $J(a) \times J(a)$:

$$H(t) = F(t) \otimes P = [h_{i(a),j(a)}(t)] =$$

$$= \begin{pmatrix} p_{1(a),1(a)}f_{1(a),1(a)}(t) & \cdots & p_{1(a),j(a)}f_{1(a),j(a)}(t) & \cdots & p_{1(a),J(a)}f_{1(a),J(a)}(t) \\ & \cdots & & \\ p_{i(a),1(a)}f_{i(a),1(a)}(t) & \cdots & p_{i(a),j(a)}f_{i(a),j(a)}(t) & \cdots & p_{i(a),j(a)}f_{i(a),j(a)}(t) \\ & & \cdots & \\ p_{J(a),1(a)}f_{J(a),1(a)}(t) & \cdots & p_{J(a),j(a)}f_{J(a),j(a)}(t) & \cdots & p_{J(a),J(a)}f_{J(a),J(a)}(t) \end{pmatrix} = \\ \begin{pmatrix} h_{1(a),1(a)}(t) & \cdots & h_{1(a),j(a)}(t) & \cdots & h_{1(a),J(a)}(t) \\ & & \cdots & \\ h_{i(a),1(a)}(t) & \cdots & h_{i(a),j(a)}(t) & \cdots & h_{i(a),j(a)}(t) \\ & & \cdots & \\ h_{J(a),1(a)}(t) & \cdots & h_{J(a),j(a)}(t) & \cdots & h_{J(a),J(a)}(t) \end{pmatrix}.$$
(3.1)

Вложенная цепь Маркова получается путем интегрирования полумарковской матрицы на полубесконечном временном интервале[89, 90, 91, 92]:

$$P = \int_{0}^{\infty} H(t)dt = \begin{pmatrix} p_{1(a),1(a)} & \cdots & p_{1(a),j(a)} & \cdots & p_{1(a),J(a)} \\ & & \ddots & & \\ p_{i(a),1(a)} & \cdots & p_{i(a),j(a)} & \cdots & p_{i(a),j(a)} \\ & & \ddots & & \\ p_{J(a),1(a)} & \cdots & p_{J(a),j(a)} & \cdots & p_{J(a),J(a)} \end{pmatrix} = [p_{i(a),j(a)}]. \quad (3.2)$$

Плотность распределения времени пребывания полумарковского процесса в состоянии $a_{i(a)}$, если априорно известно, что произойдет переключение в состояние $a_{j(a)}$ определяются делением элементов полумарковской матрицы на соответствующие элементы вложенной цепи Маркова:

$$f_{i(a),j(a)}(t) = \frac{h_{i(a),j(a)}(t)}{p_{i(a),j(a)}};$$

$$F(t) = [f_{i(a),j(a)}(t)] = \begin{pmatrix} f_{1(a),1(a)}(t) & \dots & f_{1(a),j(a)}(t) & \dots & f_{1(a),1J(a)}(t) \\ & & \dots & & \\ f_{1i(a),1(a)}(t) & \dots & f_{i(a),j(a)}(t) & \dots & f_{i(a),j(a)}(t) \\ & & \dots & & \\ f_{J(a),1(a)}(t) & \dots & f_{J(a),j(a)}(t) & \dots & f_{J(a),J(a)}(t) \end{pmatrix}.$$
(3.3)

Плотность распределения времени пребывания полумарковского процесса в состоянии $a_{i(a)}$ определяется зависимостью

$$f_{i(a)}(t) = \overline{1}_{i(a)} H(t) (\overline{1})^{T} = \sum_{j(a)=1(a)}^{J(a)} h_{i(a),j(a)}(t),$$

где

$$\overline{\mathbf{l}}_{i(a)} = (\xi_{1(a)}, ..., \xi_{1(a)-1}, \xi_{1(a)}, \xi_{1(a)+1}, ..., \xi_{J(a)}) = (0, ..., 0, 1, 0, ..., 0);$$

 $\overline{1}^{T} = (1, ..., 1, ..., 1)^{T}$ - единичный вектор-столбец.

Математическая модель системы прерываний также представляет собой полумарковский процесс [91, 92, 93, 94, 95, 96]

$$M_{\rm int} = [G_{\rm int}, H_{\rm int}(t)],$$

где G_{int} - граф, описывающий структуру полумарковского процесса;

$$G_{\text{int}} = [U, V] = \{U, O(U)\} = \{U, I(U)\};\$$

U - конечное множество состояний, совпадающее со множеством $U = \{u_{1(u)}, ..., u_{i(u)}, ..., u_{J(u)}\}$ операторов алгоритма обработки прерываний; $V = \{[u_{i(u)}, u_{j(u)}], ..., [u_{k(u)}, u_{l(u)}]\}$ - множество переходов между состояниями, совпадающее со множеством переходов между операторами алгоритма обработки прерываний; O(U) и I(U) - соответственно, выходная и входная функции состояний процесса;

$$O(U) = \{O(u_{1(u)}), ..., O(u_{i(u)}), ..., O(u_{J(u)})\};$$

$$I(U) = \{I(u_{1(u)}), ..., I(u_{i(u)}), ..., I(u_{J(u)})\};$$

 $O(u_{i(u)}) = \{u_{1[O,i(u)]}, ..., u_{i[O,i(u)]}\} \subset U$ - множество состояний, в которые полумарковский процесс может переключиться из состояния $u_{i(u)}; I(u_{i(u)}) = \{u_{1[I,i(u)]}, ..., u_{i[I,i(u)]}, ..., u_{J[I,i(u)]}\} \subset U$ - множество состояний, из которых полумарковский процесс может переключиться в состояние $u_{i(u)}$.

Полумарковская матрица $H_{int}(t)$ определяет стохастические и временные свойства процесса [89, 90, 91, 92, 93, 94, 95, 96, 97]:

$$H_{\text{int}}(t) = \begin{pmatrix} h_{1(u),1(u)}(t) & \dots & h_{1(u),j(u)}(t) & \dots & h_{1(u),J(u)}(t) \\ & & \dots & & \\ h_{i(u),1(u)}(t) & \dots & h_{i(u),j(u)}(t) & \dots & h_{i(u),j(u)}(t) \\ & & \dots & & \\ h_{J(u),1(u)}(t) & \dots & h_{J(u),j(u)}(t) & \dots & h_{J(u),J(u)}(t) \end{pmatrix} =$$

$$= \begin{pmatrix} p_{1(u),1(u)}f_{1(u),1(u)}(t) & \dots & p_{1(u),j(u)}f_{1(u),j(u)}(t) & \dots & p_{1(u),J(u)}f_{1(u),J(u)}(t) \\ & \dots & & \\ p_{i(u),1(u)}f_{i(u),1(u)}(t) & \dots & p_{i(u),j(u)}f_{i(u),j(u)}(t) & \dots & p_{i(u),j(u)}f_{i(u),j(u)}(t) \\ & \dots & & \\ p_{J(u),1(u)}f_{J(u),1(u)}(t) & \dots & p_{J(u),j(u)}f_{J(u),j(u)}(t) & \dots & p_{J(u),J(u)}f_{J(u),J(u)}(t) \end{pmatrix} = \\ = F_{int}(t) \otimes P_{int} = [p_{i(u),j(u)}] \otimes [f_{i(u),j(u)}(t)] = [h_{i(u),j(u)}(t)].$$
(3.4)

На вероятности $p_{i(u),j(u)}$ строк с 1(*u*)-й по [*J*(*u*)-1]-ю накладываются ограничения [98, 99, 100, 101, 102]

$$\sum_{i[O,i(e)]=1[O,i(e)]}^{Ji[O,i(e)]} p_{i(e),i[O,i(e)]} = \sum_{i(b)=1(b)}^{J(b)} q_{i(b)} = 1$$

Вероятности Ј(и)-й строки равны нулю, т.е.

$$p_{J(u),j(u)} = 0, \ 1(u) \le j(u) \le J(u).$$

На плотности распределения времени выполнения операторов $f_{i(u),j(u)}(t)$ строк с 1(*u*)-й по [*J*(*u*)-1]-ю накладываются ограничения [98, 99, 100, 101, 102]

 $f_{i(a)i[0,i(a)]}(t) = 0$ при $t \le T_{i(a)i[0,i(a)]} \min \le 0, t \ge T_{i(a)i[0,i(a)]} \max$.

Плотности распределения Ј(и)-й строки имеют вид

$$f_{J(u),j(u)}(t) = \lim_{\tau \to \infty} [\delta(t-\tau)],$$

где $\delta(t-\tau)$ - δ -функция Дирака; $1(u) \leq j(u) \leq J(u)$.

При инженерных расчетах могут использоваться следующие параметры:

матрица математических ожиданий времени выполнения операторов алгоритма G

$$T = \int_{0}^{\infty} tF(t)dt = [T_{i(a),j(a)}] = \begin{pmatrix} T_{1(a),1(a)} & \dots & T_{1(a),j(a)} & \dots & T_{1(a),1J(a)} \\ & & \dots & & \\ T_{1i(a),1(a)} & \dots & T_{i(a),j(a)} & \dots & T_{i(a),j(a)} \\ & & \dots & & \\ T_{J(a),1(a)} & \dots & T_{J(a),j(a)} & \dots & T_{J(a),J(a)} \end{pmatrix};$$
(3.5)

матрица дисперсий времени выполнения операторов алгоритма G
$$D = \int_{0}^{\infty} t^{2} F(t) dt - T \otimes T = [D_{i(a),j(a)}] = \begin{pmatrix} D_{1(a),1(a)} & \dots & D_{1(a),j(a)} & \dots & D_{1(a),1J(a)} \\ & & \dots & & \\ D_{1i(a),1(a)} & \dots & D_{i(a),j(a)} & \dots & D_{i(a),j(a)} \\ & & \dots & & \\ D_{J(a),1(a)} & \dots & D_{J(a),j(a)} & \dots & D_{J(a),J(a)} \end{pmatrix}; (3.6)$$

матрица нижних границ областей ненулевых значений плотностей распределения $f_{i(a),j(a)}(t)$

$$T_{\min} = [T_{i(a),j(a)\min}] = \begin{pmatrix} T_{1(a),1(a)\min} & \dots & T_{1(a),j(a)\min} & \dots & T_{1(a),1J(a)\min} \\ & & \dots & & \\ T_{1i(a),1(a)\min} & \dots & T_{i(a),j(a)\min} & \dots & T_{i(a),j(a)\min} \\ & & \dots & & \\ T_{J(a),1(a)\min} & \dots & T_{J(a),j(a)\min} & \dots & T_{J(a),J(a)\min} \end{pmatrix};$$
(3.7)

матрица верхних границ областей ненулевых значений плотностей распределения $f_{i(a),j(a)}(t)$

$$T_{\max} = [T_{i(a),j(a)\max}] = \begin{pmatrix} T_{1(a),1(a)\max} & \dots & T_{1(a),j(a)\max} & \dots & T_{1(a),1J(a)\max} \\ & & \dots & & \\ T_{1i(a),1(a)\max} & \dots & T_{i(a),j(a)\max} & \dots & T_{i(a),j(a)\max} \\ & & \dots & & \\ T_{J(a),1(a)\max} & \dots & T_{J(a),j(a)\max} & \dots & T_{J(a),J(a)\max} \end{pmatrix};$$
(3.8)

матрица математических ожиданий времени выполнения операторов алгоритма $G_{\rm int}$

$$T_{\text{int}} = \int_{0}^{\infty} tF_{\text{int}}(t)dt = [T_{i(u),j(u)}] = \begin{pmatrix} T_{1(u),1(u)} & \dots & T_{1(u),j(u)} & \dots & T_{1(u),1J(u)} \\ & & \dots & & \\ T_{1i(u),1(u)} & \dots & T_{i(u),j(u)} & \dots & T_{i(u),J(u)} \\ & & \dots & & \\ T_{J(u),1(u)} & \dots & T_{J(u),j(u)} & \dots & T_{J(u),J(u)} \end{pmatrix};$$
(3.9)

матрица дисперсий времени выполнения операторов алгоритма G_{int}

$$D_{\rm int} = \int_{0}^{\infty} t^2 F_{\rm int}(t) dt - T_{\rm int} \otimes T_{\rm int} =$$

$$= [D_{i(u),j(u)}] = \begin{pmatrix} D_{1(u),1(u)} & \dots & D_{1(u),j(u)} & \dots & D_{1(u),J(u)} \\ & & \dots & & \\ D_{i(u),1(u)} & \dots & D_{i(u),j(u)} & \dots & D_{i(u),j(u)} \\ & & \dots & & \\ D_{J(u),1(u)} & \dots & D_{J(u),j(u)} & \dots & D_{J(u),J(u)} \end{pmatrix};$$
(3.10)

матрица нижних границ областей ненулевых значений плотностей распределения $f_{i(u),j(u)}(t)$

$$T_{\text{intmin}} = [T_{i(u),j(u)\min}] = \begin{pmatrix} T_{1(u),1(u)\min} & \dots & T_{1(u),j(u)\min} & \dots & T_{1(u),J(u)\min} \\ & & \dots & & \\ T_{i(u),1(u)\min} & \dots & T_{i(u),j(u)\min} & \dots & T_{i(u),J(u)\min} \\ & & \dots & & \\ T_{J(u),1(u)\min} & \dots & T_{J(u),j(u)\min} & \dots & T_{J(u),J(u)\min} \end{pmatrix};$$
(3.11)

матрица верхних границ областей ненулевых значений плотностей распределения $f_{i(u),j(u)}(t)$

$$T_{\text{int max}} = [T_{i(u),j(u)\max}] = \begin{pmatrix} T_{1(u),1(u)\max} & \dots & T_{1(u),j(u)\max} & \dots & T_{1(u),J(u)\max} \\ & & \dots & & \\ T_{i(u),1(u)\max} & \dots & T_{i(u),j(u)\max} & \dots & T_{i(u),J(u)\max} \\ & & \dots & & \\ T_{J(u),1(u)\max} & \dots & T_{J(u),j(u)\max} & \dots & T_{J(u),J(u)\max} \end{pmatrix}.$$
(3.12)

3.2. Временные характеристики полумарковских процессов

Процесс решения задачи бортовой ЭВМ может быть представлен как блуждание по полумарковской цепи [100, 101, 103, 104, 105], при котором бортовая ЭВМ пребывает в состоянии $a_{i(a)}$ в течение случайного времени, а затем с вероятностью $p_{i(a),j(a)}$ переключается в состояние $a_{j(a)}$. Время, в течение которого ЭВМ пребывает в состоянии $a_{i(a)}$, определено с точностью до плотности распределения $f_{i(a),j(a)}(t)$ [100, 105, 106, 107, 108, 109].

Состояния, в которые последовательно попадает процесс при блужданиях, будем называть траекторией решения. Очевидно, что для каждого конкретного набора обрабатываемых данных $D = (d_1(i), ..., d_n(i), ..., d_N(i))$, получаемых на выходе сенсорной системы, траектория решения строго детерминирована. Для внешнего же, по отношению к вычислительному комплексу, наблюдателя каждый конкретный вектор обрабатываемых данных является случайным и поэтому траектория решения для него также является случайной.

В соответствии с методологией, приведенной в [97, 99, 100, 106, 109], одним из способов оценки временных интервалов в полумарковском процессе является выделение траекторий с заранее заданными свойствами на графе состояний G = [A, Z] (для алгоритма обработки прерываний - $G_{int} = [U, W]$) и определение плотности распределения времени перемещения по выделенным траекториям.

Выделим в полумарковском процессе M = [G, H(t)] множество траекторий решения $\{G_1, ..., G_n, ..., G_N\} \subset G$ таких, что

$$G_n = [A_n, Z_n] =$$

 $=[\{a_{0(n)}^{n},...,a_{i(n)}^{n},...,a_{J(n)}^{n}\},\{[a_{0(n)}^{n},a_{1(n)}^{n}],...,[a_{i(n)}^{n},a_{i(n)+1}^{n}],...,[a_{J(n)-1}^{n},a_{J(n)}^{n}]\}],$ где n = 1, 2, ..., n, ..., N.

На состояния $a_{i(n)}^n$ траекторий не накладывается никаких ограничений, кроме $a_{i(n)}^n \in A_n \subset A$, в том смысле, что для любого состояния $a_{i(a)} \in A$ возможна ситуация, когда $a_{i(a)} = a_{i(n)}^n \in A_n \subset A$ и $a_{i(a)} = a_{j(m)}^m \in A_m \subset A$ (см. рис. 3.1).

Пусть в выделенной траектории $G_n = [A_n, Z_n]$ процесс начинается в состоянии $a_{0(n)}^n \in A_n$ и заканчивается в состоянии $a_{J(n)}^n \in A_n$, причем плотность распределения времени пребывания в состоянии $a_{i(n)}^n \in A_n$ с последующим переключением в состояние $a_{i(n)+1}^n \in A_n$ равна $f_{i(n),i(n)+1}^n(t)$, а вероятность перехода из состояния $a_{i(n)}^n \in A_n$ в состояние $a_{i(n)+1}^n \in A_n$ равна $p_{i(n),i(n)+1}^n$. Тогда взвешенная плотность распределения времени достижения подмножества состояний $\{a_{J(1)}^1, ..., a_{J(n)}^n, ..., a_{J(N)}^N,\}$ из подмножества состояний $\{a_{J(1)}^1, ..., a_{J(n)}^n, ..., a_{J(N)}^N,\}$ по одной из выделенных траекторий $\{G_1, ..., G_n, ..., G_N\} \subset G$ [104, 106, 109, 110]

Рисунок 3.1. – Выделенные траектории в полумарковском процессе

плотность распределения времени достижения подмножества состояний $\{a_{J(1)}^1, ..., a_{J(n)}^n, ..., a_{J(N)}^N,\}$ из подмножества состояний $\{a_{J(1)}^1, ..., a_{J(n)}^n, ..., a_{J(N)}^N,\}$ по одной из выделенных траекторий $\{G_1, ..., G_n, ..., G_N\} \subset G$

$$f^{n}(t) = \frac{\sum_{n=1}^{N} f^{n}_{0(n),1(n)}(t) * \dots * f^{n}_{i(n),i(n)+1}(t) * \dots * f^{n}_{J(n)-1,J(n)}(t) \prod_{i(n)=0(n)}^{J(n)-1} p^{n}_{i(n),i(n)+1}}{\sum_{n=1}^{N} \prod_{i(n)=0(n)}^{J(n)-1} p^{n}_{i(n),i(n)+1}}; \quad (3.13)$$

вероятность достижения подмножества состояний $\{a_{J(1)}^1, ..., a_{J(n)}^n, ..., a_{J(N)}^N,\}$ из состояний подмножества $\{a_{J(1)}^1, ..., a_{J(n)}^n, ..., a_{J(N)}^N,\}$ по одной из выделенных траекторий $\{G_1, ..., G_n, ..., G_N\} \subset G$

$$p^{n} = \sum_{n=1}^{N} \prod_{i(n)=0(n)}^{J(n)-1} p_{i(n),i(n)+1}^{n} .$$
(3.14)

Зависимости (3.13) и (3.14) являются достаточно общими и из них могут быть получены все возможные частные случаи определения плотностей распределения временных интервалов в алгоритмах исследуемого класса. Из (3.13) могут быть получены выражения для определения числовых характеристик плотности распределения $f^n(t)$ по числовым характеристикам плотностей $f^n_{i(n),i(n)+1}(t)$ и вероятностям $p^n_{i(n),i(n)+1}$.

$$T^{n} = \int_{0}^{\infty} tf^{n}(t) dt = \frac{\sum_{n=1}^{N} \prod_{i(n)=0(n)}^{J(n)-1} p_{i(n),i(n)+1}^{n} \sum_{i(n)=0(n)}^{J(n)-1} T_{i(n),i(n)+1}^{n}}{\sum_{n=1}^{N} \prod_{i(n)=0(n)}^{J(n)-1} p_{i(n),i(n)+1}^{n}}; \qquad (3.15)$$

$$D^{n} = \int_{0}^{\infty} (t - T_{i(n),i(n)+1}^{n})^{2} f^{n}(t) dt =$$

$$= \frac{\sum_{n=1}^{N} \left(\prod_{i(n)=0(n)}^{J(n)-1} p_{i(n),i(n)+1}^{n} \right) \left[\sum_{i(n)=0(n)}^{J(n)-1} D_{i(n),i(n)+1}^{n} + \left(\sum_{i(n)=0(n)}^{J(n)-1} T_{i(n),i(n)+1}^{n} \right)^{2} \right]}{\sum_{n=1}^{N} \prod_{i(n)=0(n)}^{J(n)-1} p_{i(n),i(n)+1}^{n}} - (T^{n})^{2}; \qquad (3.16)$$

$$T_{\min}^{n} = \min_{n} \left\{ \sum_{i(n)=0(n)}^{J(n)-1} T_{i(n),i(n)+1}^{n} \min_{i(n)=1}^{N} \right\}; \qquad (3.17)$$

$$T_{\max}^{n} = \max_{n} \left\{ \sum_{(n)=0(n)}^{J(n)-1} T_{i(n),i(n)+1\max}^{n} \right\};$$
(3.18)

Зависимости, аналогичные (3.13) - (3.18) могут быть получены и для полумарковского процесса $M_{\text{int}} = [G_{\text{int}}, H_{\text{int}}(t)].$

3.3 Метод прямого расчёта числовых характеристик

Из полумарковской матрицы (3.1) могут быть получены следующие матрицы:

матрица вероятностей

$$p = \int_{0}^{\infty} H(t) dt = \left[p_{m,n}(t) \right]; \qquad (3.20)$$

матрица чистых плотностей распределения (4.4)

$$f(t) = H(t) / p = [f_{m,n}(t)], \qquad (3.21)$$

где / -операция, обратная операции прямого перемножения матриц, такая, что если $h(t) = f(t) \otimes p$, то $h(t) = [h(t) / p] \otimes p$.

Из (3.21) могут быть получены следующие матрицы:

матрица чистых математических ожиданий плотностей распределения

$$T = \int_{0}^{\infty} t \cdot f(t) dt = [T_{m,n}]; \qquad (3.22)$$

матрица чистых дисперсий плотностей распределения

$$D = \int_{0}^{\infty} t^{2} \cdot f(t) dt - T \otimes T = \left[D_{m,n} \right]; \qquad (3.23)$$

матрица взвешенных математических ожиданий

$$\tilde{T} = T \otimes p = \left[p_{m,n} T_{m,n} \right] = \left[\tilde{T}_{m,n} \right]; \qquad (3.24)$$

матрица взвешенных дисперсий

$$D = D \otimes p = \left[p_{m,n} B_{m,n} \right] == \left[\tilde{D}_{m,n} \right].$$
(3.25)

Матрицы (3.20), (3.22), (3.23), (3.24), (3.25) создают базовый набор данных для численного анализа комплексного полумарковского процесса.

Введем операцию свертки полумарковских матриц $h_{\alpha}(t)$ и $h_{\beta}(t)$, имеющих одинаковые размеры [110, 111, 112]

$$\boldsymbol{h}_{\alpha}(t) * \boldsymbol{h}_{\beta}(t) = L^{-1}[\{L[\boldsymbol{h}_{\alpha}(t)] \cdot L[\boldsymbol{h}_{\alpha}(t)]\}].$$
(3.26)

Если $\boldsymbol{h}_{\alpha}(t) = \boldsymbol{h}_{\beta}(t) = \boldsymbol{h}_{\Sigma}(t)$, то $\boldsymbol{h}_{\alpha}(t) * \boldsymbol{h}_{\beta}(t) = \boldsymbol{h}_{\Sigma}^{*2}(t)$, и физически элемент

матрицы $\mathbf{h}_{\Sigma}^{*2}(t)$, стоящий на пересечении *m*-й строки и *n*-го столбца определяет взвешенную плотность распределения времени, за которое элемент с номером столбца достигается из элемента с номером строки за два переключения. Если $h_{\alpha}(t) = h^{*k-1}(t)$, $h_{\beta}(t) = h(t)$, то свертка этих матриц означает, что элемент матрицы $\mathbf{h}_{\alpha}(t) * \mathbf{h}_{\beta}(t)$, стоящий на пересечении *m*-й строки и *n*-го столбца определяет взвешенную плотность распределения времени, за которое элемент с номером столбца достигается из элемента с номером строки и *n*-го столбца определяет взвешенную плотность распределения времени, за которое элемент с номером столбца достигается из элемента с номером строки за *k* переключений.

Обозначим

$$\boldsymbol{h}_{\alpha}(t) = \left[p_{m,n,\alpha} \cdot f_{m,n,\alpha}(t) \right]; \ \boldsymbol{h}_{\beta}(t) = \left[p_{m,n,\beta} \cdot f_{m,n,\beta}(t) \right].$$
(3.27)

Тогда

$$\boldsymbol{h}_{\alpha}(t) * \boldsymbol{h}_{\beta}(t) = L^{-1} \Big[\Big\{ L[\boldsymbol{h}_{\alpha}(t)] \cdot L[\boldsymbol{h}_{\beta}(t)] \Big\} \Big] = \\ = \Big[\sum_{l=1}^{N} \Big(p_{m,l,\alpha} \cdot q_{l,n,\beta} \Big) \cdot L^{-1} \Big\{ L[f_{m,l,\alpha}(t)] \cdot L[f_{l,n,\beta}(t)] \Big\} \Big],$$
(3.28)

где во внешних квадратных скобках представлен элемент матрицы, стоящий на пересечении *m*-й строки и *n*-го столбца.

Найдем математическое ожидание и дисперсию от (3.28).

$$\int_{0}^{\infty} t \cdot \left[\boldsymbol{h}_{\alpha}(t) * \boldsymbol{h}_{\beta}(t) \right] dt = \left[\sum_{l=1}^{N} \left(p_{m,l,\alpha} \cdot p_{l,n,\beta} \right) \cdot \left(T_{m,l,\alpha} + T_{l,n,\beta} \right) \right] =$$

$$= \left[p_{m,n,\alpha\beta} T_{m,n,\alpha\beta} \right] = \boldsymbol{p}_{\alpha\beta} \otimes \boldsymbol{T}_{\alpha\beta};$$

$$(3.29)$$

$$\int_{0}^{\infty} t^{2} \cdot \left[\boldsymbol{h}_{\alpha}(t) * \boldsymbol{h}_{\beta}(t) \right] dt - \boldsymbol{T} \qquad \otimes \boldsymbol{T} =$$

$$\begin{bmatrix} T & [\mathbf{n}_{\alpha}(t)^{*}\mathbf{n}_{\beta}(t)] at - \mathbf{I}_{\alpha\beta} \otimes \mathbf{I}_{\alpha\beta} = \\ 0 \end{bmatrix} \begin{bmatrix} \sum_{l=1}^{N} (p_{m,l,\alpha} \cdot p_{l,n,\beta}) \cdot (D_{m,l,\alpha} + D_{l,n,\beta} + T_{m,l,\alpha}^{2} + T_{l,n,\beta}^{2}) \end{bmatrix} - [T_{m,n,\alpha\beta}^{2}] = (3.30)$$
$$= [p_{m,n,\alpha\beta} \widetilde{D}_{m,n,\alpha\beta}] - \mathbf{T}_{\alpha\beta} \otimes \mathbf{T}_{\alpha\beta},$$

где $T_{m,l,\alpha}$, $D_{m,l,\alpha}$ $p_{m,l,\alpha}$ - математическое ожидание, дисперсия и вероятность элемента полумарковской матрицы $h_{\alpha}(t)$, находящегося на пересечении *m*-й строки и *l*-го столбца; $T_{l,n,\beta}$, $D_{l,n,\beta}$ $p_{l,n,\beta}$ - математическое ожидание, дисперсия и вероятность элемента полумарковской матрицы $h_{\beta}(t)$, находящегося на пересечении l-й строки и *n*-го столбца; $T_{m,n,\alpha\beta}$, $p_{m,n,\alpha\beta}$ - математическое ожидание, и вероятность элементов полумарковской матрицы произведения, находящихся на пересечении *m*-й строки и *n*-го столбца; $D_{m,n,\alpha\beta}$ - начальный момент второго порядка элемент полумарковской матрицы произведения, находящегося на пересечении *m*-й строки и *n*-го столбца.

Введем операцию свертки числовых характеристик полумарковских матриц [113, 114, 115, 116]

$$\boldsymbol{T}_{\alpha} * \boldsymbol{T}_{\beta} = \int_{0}^{\infty} t \cdot \left[\boldsymbol{h}_{\alpha}(t) * \boldsymbol{h}_{\beta}(t) \right] dt$$
(3.31)

$$\boldsymbol{D}_{\alpha} * \boldsymbol{D}_{\beta} = \int_{0}^{\infty} t^{2} \cdot \left[\boldsymbol{h}_{\alpha}(t) * \boldsymbol{h}_{\beta}(t) \right] dt - \boldsymbol{T}_{\alpha\beta} \otimes \boldsymbol{T}_{\alpha\beta}$$
(3.32)

Таким образом, могут быть получены выражения для прямого расчета следующих числовых характеристик:

вероятность достижения состояния *n*.из состояния *m* при блужданиях -

$$p'_{m,n} = {}^{r}I_{m} \cdot \left[\sum_{k=l}^{\infty} \left(p'\right)^{k}\right] \cdot {}^{c}I_{n}; \qquad (3.33)$$

взвешенное математическое ожидание достижения состояния *n*.из состояния *m* при блужданиях -.

$$\tilde{T}'_{m,n} = {}^{r}I_{m} \cdot \left[\sum_{k=1}^{\infty} \left(\tilde{T}'\right)^{*k}\right] \cdot {}^{c}I_{n}, \qquad (3.34)$$

взвешенная дисперсия достижения состояния *n*.из состояния *m* при блужданиях -.

$$\tilde{D}'_{m,n} = {}^{r}I_{m} \cdot \left[\sum_{k=1}^{\infty} \left(\tilde{D}'\right)^{*k}\right] \cdot {}^{c}I_{n}; \qquad (3.35)$$

чистое математическое ожидание достижения состояния *n*.из состояния *m* при блужданиях -

$$T'_{m,n} = \frac{\tilde{T}'_{m,n}}{p'_{m,n}},$$
(3.36)

чистая дисперсия достижения состояния *n*.из состояния *m* при блужданиях -.

$$D'_{m,n} = \frac{\tilde{D}'_{m,n}}{p'_{m,n}}$$
(3.37)

вероятность возврата в состояние *т* при блужданиях -.

$$p_{m,n}'' = {}^{r}I_{m} \cdot \left[\sum_{k=l}^{\infty} (p'')^{k}\right] \cdot {}^{c}I_{n+l}; \qquad (3.38)$$

взвешенное математическое ожидание возврата в состояние *m* при блужданиях -.

$$\tilde{T}_{m,m}'' = {}^{r}I_{m} \cdot \left[\sum_{k=l}^{\infty} \left(\tilde{T}''\right)^{*k}\right] \cdot {}^{c}I_{n+l}, \qquad (3.39)$$

взвешенная дисперсия возврата в состояние *т* при блужданиях - -.

$$\tilde{D}_{m,n}'' = {}^{r}I_{m} \cdot \left[\sum_{k=l}^{\infty} \left(\tilde{D}''\right)^{*k}\right] \cdot {}^{c}I_{n+l}; \qquad (3.40)$$

чистое математическое ожидание возврата в состояние *m* при блужданиях -

$$T''_{m,m} = \frac{\tilde{T}''_{m,m}}{p''_{m,m}}, \qquad (3.41)$$

чистая дисперсия возврата в состояние *т* при блужданиях -.

$$D''_{m,m} = \frac{\tilde{D}''_{m,m}}{p''_{m,m}}$$
(3.42)

где p' - стохастическая матрица, получаемая из матрицы H'(t) с использованием операции (3.20); \tilde{T}' - матрица взвешенных математических ожиданий, получаемая из матрицы H'(t) с использованием операции (3.24); \tilde{D}' матрица взвешенных дисперсий, получаемая из матрицы H'(t) с использованием операции (3.25); где p'' - стохастическая матрица, получаемая из матрицы H''(t) с использованием операции (3.20); \tilde{T}'' - матрица взвешенных математических ожиданий (3.25); \tilde{D}'' матрица (3.20); \tilde{T}'' - матрица взвешенных математических ожиданий, получаемая из матрицы H''(t) с использованием операции (3.25); \tilde{D}'' матрица взвешенных дисперсий, получаемая из матрицы H''(t) с использованием операции (3.25); \tilde{D}'' матрица взвешенных дисперсий, получаемая из матрицы H''(t) с использованием операции (3.25); \tilde{D}'' матрица взвешенных дисперсий, получаемая из матрицы H''(t) с использованием операции (3.25);

$$\left(\tilde{T}'\right)^{*k} = \left(\tilde{T}'\right)^{*k-1} * \tilde{T}'; \qquad (3.43)$$

$$\left(\tilde{D}'\right)^{*k} = \left(\tilde{D}'\right)^{*k} * \tilde{D}'.$$
(3.44)

$$\left(\tilde{T}''\right)^{*k} = \left(\tilde{T}''\right)^{*k-1} * \tilde{T}'; \qquad (3.45)$$

$$\left(\tilde{D}''\right)^{*k} = \left(\tilde{D}''\right)^{*k} * \tilde{D}'.$$
(3.46)

Таким образом, получены общие матричные аналитические выражения которые позволяют напрямую, без вычисления интегралов рассчитать вероятностные и временные характеристики блужданий по полумарковскому процкссу по временным и вероятностным характеристикам полумарковской матрицы H(t) и ее производных, H'(t) и H''(t).

3.4. Метод последовательных упрощений полумарковского процесса

3.4.1. Структура упрощаемого процесса

Полученные в п. 3.3 формулы для прямого расчета вероятностных и временных параметров блуждания по полумарковскому процессу позволяют существенно упростить анализ временных и вероятностных характеристик управляющих алгоритмов цифровых систем управления, но все-таки достаточно сложны для их реализации. Кроме того, в эти выражения входят возведение числовых матриц в степень, причем показатель степени теоретически может возрастать до бесконечности, и поэтому всега существует проблема, при каком значении k процедура расчета может быть остановлена. Поэтому в настоящем разделе описывается метод последовательных упрощений полумарковского процесса, где бесконечность степени, в которую возводится числовая матрица, уже учтена при выводе формул пересчета числовых характеристик.

Основные операции этого метода показаны на примере самого сложного случая, когда структура управляющего алгоритма, заложенного в цифровую систему управления представляет собой полный граф с петлями.

В самом общем случае полумарковский процесс, описывающий управляющий алгоритм, заложенный в цифровую систему управления МО, имеет вид

$$^{S+J}\boldsymbol{\mu} = \left\{ {^{S+J}\boldsymbol{A}, {^{S+J}\boldsymbol{r}, {^{S+J}\boldsymbol{h}}(t)} \right\},$$
(3.47)

где ${}^{S+J}A$ - множество состояний; ${}^{S+J}A = {}^{S}A \cup {}^{\overline{S}}A$; ${}^{S}A \cap {}^{\overline{S}}A = \emptyset$; ${}^{S}A = \{a_1, ..., a_s, ..., a_S\}$ - состояния, моделирующие операторы генерации транзакций; ${}^{\overline{S}}A = \{a_{S+1}, ..., a_{S+j}, ..., a_{S+J}\}$ - состояния, моделирующие прочие операторы алгоритма; ${}^{S+J}r = ({}^{S+J}r_{mn})$ - матрица смежности, имеющая размеры $(S+J) \times (S+J)$; ${}^{S+J}h(t)$ - полумарковская матрица, имеющая размеры $(S+J) \times (S+J)$; t - время;

$$^{S+J}\boldsymbol{h}(t) = \begin{bmatrix} S+J \ \boldsymbol{p} \otimes^{S+J} \boldsymbol{f}(t) \end{bmatrix}; \tag{3.48}$$

 ${}^{S+J}p$ - стохастическая матрица; ${}^{S+J}f(t)$ - матрица плотностей распределения времени пребывания в состояниях множества ${}^{S+J}A$.

На полумарковский процесс накладываются следующие ограничения [100, 105, 109, 118,119]: процесс является эргодическим, а его структура такова, что $r_{mn} = 1$ для $1 \le m, n \le J + S$ (рис. 3.2).

Транзакция генерируется в одном из следующих случаев:

1) при прямом переключении процесса из $a_s \in {}^{S}A$ в $a_m \in {}^{S}A$;

2) при переключении процесса из $a_s \in {}^{S}A$ в $a_n \in {}^{\overline{S}}A$ с последующим блужданием из $a_n \in {}^{\overline{S}}A$ в $a_m \in {}^{S}A$.

Рисунок 3.2. – Структура полумарковского процесса

Для оценки временных интервалов необходимо заменить блуждания по подмножеству состояний $\bar{S}A$ на прямое переключение, т.е. упростить (3.47) до процесса

$${}^{S}M = \left\{ {}^{S}A, {}^{S}\boldsymbol{r}, {}^{S}\boldsymbol{h}(t) \right\},$$
(3.49)

где ${}^{S}\mathbf{r} = ({}^{S}r_{mn})$ - матрица смежности, имеющая размеры $S \times S$, у которой ${}^{S}r_{mn} = 1, 1 \le m, n \le S; {}^{S}\mathbf{h}(t)$ - полумарковская матрица, имеющая размеры $S \times S$.

При упрощении ликвидируются состояния $\overline{S}A$, в результате чего каждое переключение полумарковского процесса (3.49) моделирует генерацию одной транзакции. Для упрощения полумарковского процесса может быть использована рекурсивная процедуры.

3.4.2. Элементарные операции упрощения

Для реализации рекурсивной процедуры введем три элементарных операции упрощения[100, 110, 114, 115], показанные на рис. 3.3

Рисунок 3.3. – Операции упрощения

На рис. 3.3 а показана операция объединения последовательно расположенных состояний. Вероятность достижения a_n из a_m , взвешенная плотность распределения времени блуждания от состояния a_m до состояния a_n , а также математическое ожидание и дисперсия плотности распределения и определяются по зависимостям:

$$\tilde{p}_{m,n} = \prod_{k=m}^{n-1} p_{k,k+1}; \qquad (3.50);$$

$$\widetilde{h}_{m,n}(t) = L^{-1} \left[\prod_{k=m}^{n-1} L[h_{k,k+1}(t)] \right];$$
(3.51)

$$\tilde{T}_{m,n} = \sum_{k=m}^{n-1} T_{k,k+1} , \qquad (3.52)$$

$$\tilde{D}_{m,n} = \sum_{k=m}^{n-1} D_{k,k+1} .$$
(3.53)

где $p_{k,k+1}$ - вероятность переключения в сопряженное состояние; $h_{k,k+1}(t)$ взвешенная плотность распределения времени переключения; $T_{k,k+1}$ - математическое ожидание плотности распределения времени переключения в сопряженные состояния; $T_{k,k+1}$ - дисперсия плотности распределения времени переключения в сопряженные состояния

На рис. 3.3 b показана операция объединения параллельно расположенных дуг. Вероятность переключения в a_n из a_m , взвешенная плотность распределения времени переключения, а также математическое ожидание определяются по зависимостям:

$$\widetilde{p}_{m,n} = \sum_{k=1}^{K} p_{m,n,k} ;$$
(3.54)

$$\widetilde{h}_{m,n}(t) = \sum_{k=1}^{K} h_{m,n,k}(t);$$
(3.55)

$$\widetilde{T}_{m,n} = \frac{\sum_{k=1}^{K} p_{m,n,k} \cdot T_{m,n,k}}{\widetilde{p}_{m,n}}, \qquad (3.56)$$

$$\tilde{D}_{m,n} = \frac{\sum_{k=1}^{K} p_{m,n,k} \cdot \left(D_{m,n,k} + T_{m,n,k}^2 \right)}{\tilde{p}_{m,n}} - \tilde{T}_{m,n}^2.$$
(3.57)

где k - номер дуги, ведущей из a_m в a_n ; $p_{m,n,k}$, $h_{m,n,k}(t)$, $T_{m,n,k}$, $D_{m,n,k}$ - вероятность, взвешенная плотность распределения и математическое ожидание времени переключения из a_m в a_n по k-й дуге.

На рис. 2 с показана операция ликвидации петель. Вероятность переключения в a_n из a_m , взвешенная плотность распределения времени переключения из a_m в a_n , а также математическое ожидание определяются по зависимостям:

$$\widetilde{p}_{m,n} = \frac{p_{m,n}}{1 + p_{m,m}};$$
(3.58)

$$\widetilde{h}_{m,n}(t) = L^{-1} \left[{}^{r} \boldsymbol{I} \cdot \sum_{k=1}^{\infty} \{ L[\boldsymbol{h}_{c}(t)] \}^{k} \cdot {}^{c} \boldsymbol{I} \right];$$
(3.59)

$$\boldsymbol{h}_{c} = \begin{pmatrix} h_{m,m}(t) & h_{m,n}(t) \\ 0 & 0 \end{pmatrix};$$
(3.60)

$$\tilde{n}\boldsymbol{I} = \begin{pmatrix} 0\\1 \end{pmatrix}; \tag{3.61}$$

$${}^{r}\boldsymbol{I} = (0,1);$$
 (3.62)

$$\tilde{T}_{m,n} = T_{m,n} + \frac{T_{m,m} \cdot p_{m,m}}{1 - p_{m,m}};$$
(3.63)

$$\tilde{D}_{m,n} = D_{m,n} + \frac{D_{m,m} \cdot p_{m,m}}{1 - p_{m,m}} + \frac{T_{m,m}^2 \cdot p_{m,m}}{\left(1 - p_{m,m}\right)^2}.$$
(3.64)

3.3.3. Рекурсивная процедура

Рекурсивная процедура предполагает последовательную ликвидацию состояний, начиная с (*S*+*J*)-го, и кончая (*S*+1)-м. Пусть в результате предыдущих преобразований были ликвидированы состояния с (*S*+*J*)-го по (*S*+*I*+1)-е, т.е. полумарковский процесс (1.3.2) был упрощен до процесса

$$^{S+j}M = \left\{ {^{S+j}A, {^{S+j}r}, {^{S+j}h(t)} \right\},$$
(3.65)

где ${}^{S+j}\mathbf{r} = {S+j r_{mn}}$ - матрица смежности, имеющая размеры $S + j \times S + j$, у которой ${}^{S}r_{mn} = 1$, $1 \le m, n \le S + j$; ${}^{S+J}\mathbf{h}(t) = {}^{S+J}h_{mn}(t)$ - полумарковская матрица, имеющая размеры $S + j \times S + j$.

Первой процедурой упрощения является ликвидация петли на состоянии a_{S+i} .

Вероятность переключения в a_n , $1 \le n \le S+j-1$ из a_{S+j} , взвешенная плотность распределения времени переключения, математическое ожидание и дисперсия определяются по зависимостям:

$${}^{S+j}\tilde{p}_{S+j,n} = \frac{{}^{S+j}p_{S+j,n}}{1+{}^{S+j}p_{S+j,S+j}};$$
(3.66)

$$\widetilde{h}_{S+j,n}(t) = L^{-1} \left[\boldsymbol{I}_r \cdot \sum_{k=1}^{\infty} \left\{ L \left[S^{+j} \boldsymbol{h}_c(t) \right] \right\}^k \cdot \boldsymbol{I}_c \right];$$
(3.67)

$${}^{S+j}\boldsymbol{h}_{c} = \begin{pmatrix} {}^{S+j}\boldsymbol{h}_{S+j,S+j}(t) & {}^{S+j}\boldsymbol{h}_{S+j,n}(t) \\ 0 & 0 \end{pmatrix};$$
(3.68)

$$^{S+j}\widetilde{T}_{S+j,n} = ^{S+j}T_{S+j,n} + \frac{^{S+j}T_{S+j,S+j} \cdot ^{S+j}p_{S+j,S+j}}{1 - ^{S+j}p_{S+j,S+j}};$$
(3.69)

$${}^{S+j}\widetilde{D}_{S+j,n} = {}^{S+j}D_{S+j,n} + \frac{{}^{S+j}D_{S+j,S+j} \cdot {}^{S+j}p_{S+j,S+j}}{1 - {}^{S+j}p_{S+j,S+j}} + \frac{{}^{S+j}T_{S+j,S+j}^2 \cdot {}^{S+j}p_{S+j,S+j}}{\left(1 - {}^{S+j}p_{S+j,S+j}\right)^2},$$

$$(3.70)$$

Следующей операцией рекурсивного цикла является расщепление a_{S+j} на $(S + j - 1)^2$ состояний, как это показано на рис. 3.4.

Состояние a_{S+j} (обведено штрихпунктирной линией) сначала разбивается на множество состояний $A_{S+j} = \{a_{S+j,1}, ..., a_{S+j,n}, ..., a_{S-j,S+j-1}\}$ (каждое обведено штриховой линей), а затем состояния $a_{S+j,n}, 1 \le n \le S+j-1$ разбиваются на множества $A_{S+j,n} = \{a_{S+j,n,1}, ..., a_{S+j,n,n}, ..., a_{S-j,n,S+j-1}\}$. Для того, чтобы обеспечить эквивалентность преобразований, вероятности переключения из a_n в состояния множества $A_{S+j,n}$, взвешенные плотности распределения и математические ожидания должны быть пересчитаны в соответствии с зависимостями (4):

$$\hat{p}_{n,m} = {}^{S+j} p_{n,S+j} \cdot {}^{S+j} \tilde{p}_{S+j,m},$$
(3.71)

$$\hat{h}_{n,m}(t) = L^{-1} \left[L \left[S^{+j} h_{n,S+J}(t) \right] \cdot L \left[S^{+j} \widetilde{h}_{S+J,m}(t) \right] \right]; \qquad (3.72)$$

Рис. 4.3. Расщепление состояния a_{S+i}

$$\hat{T}_{n,m}(t) = {}^{S+j} T_{n,S+J} + {}^{S+j} \tilde{T}_{S+J,m};$$
(3.73)

$$\hat{D}_{n,m}(t) = {}^{S+j} D_{n,S+J} + {}^{S+j} \widetilde{D}_{S+J,m} \quad 1 \le n,m \le S+j-1.$$
(3.74)

Далее должны быть пересчитаны вероятности, взвешенные плотности распределения и их числовые характеристики для полумарковского процесса с *S* + *j* - 1состояниями:

$${}^{S+j-1}p_{n,m} = {}^{S+j}p_{n,m} + \hat{p}_{n,m}; \qquad (3.75)$$

$$^{S+j-1}h_{n,m} = {}^{S+j}h_{n,m}(t) + \hat{h}_{n,m}(t);$$
 (3.76)

$$^{S+j-1}T_{n,m} = \frac{\overset{S+j}{} p_{n,m} \cdot \overset{S+j}{} T_{n,m} + \hat{p}_{n,m} \cdot \hat{T}_{n,m}}{\overset{S+j}{} p_{n,m} + \hat{p}_{n,m}}.$$
(3.77)

$${}^{S+j-1}D_{n,m} = \frac{{}^{S+j}p_{n,m} \cdot \left({}^{S+j}D_{n,m} + {}^{S+j}T_{n,m}^2\right) + \hat{p}_{n,m}\left(\hat{D}_{n,m} + \hat{T}_{n,m}^2\right)}{{}^{S+j}p_{n,m} + \hat{p}_{n,m}} S^{+j-1}T_{n,m}^2.$$

(3.78)

Рекурсивная процедура повторяется от j = J до j = 1. В результате рекурсивной процедуры рассчитываются элементы: стохастической матрицы ${}^{S} p = {}^{S} p_{mn}$, полумарковской матрицы ${}^{S} h = \left[{}^{S} h_{mn}(t) \right]$ и матрицы математических ожиданий ${}^{S} T = \left({}^{S} T_{mn} \right)$ для полумарковского процесса ${}^{S} M$.

3.4.3. Время между транзакциями

Процесс ${}^{S}M$, сформированный в результате эквивалентных преобразований полумарковского процесса ${}^{S+J}M$, остается эргодическим. Для эргодического процесса плотность распределения времени между транзакциями определяется по зависимости [90, 94, 95, 100, 103, 108, 120]

$$g(t) = \sum_{m=1}^{S} \frac{\sum_{m=1}^{S} p_{m,n} S_{m,n}}{T_{m,m}} \left[\sum_{n=1}^{S} h_{m,n} \right],$$
(3.79)

где $\sum_{n=1}^{S} {}^{S}h_{m,n}$ и $\sum_{n=1}^{S} {}^{S}p_{m,n}{}^{S}T_{m,n}$ - плотность распределения и математическое

ожидание времени пребывания полумарковского процесса ${}^{S}M$ в состоянии $a_{m} \in {}^{S}A$, соответственно; ${}^{1}T_{m,m}$ - математическое ожидание времени возврата процесса в состояние a_{m} .

Для определения ${}^{1}T_{m,m}$ необходимо воспользоваться рекурсивной процедурой, описанной выше, на полумарковском процессе ${}^{S}M$. Без нарушения общности опишем ее для получения ${}^{1}T_{1,1}$. Для других значений $1 \le m \le S$ запуск указанной процедуры может быть проведен, например, после изменения нумерации состояний полумарковского процесса.

Процедура для индекса *m*, декрементирующего от S к 1, сводится к выполнению следующих операций:

ликвидация петель

$$\tilde{p}_{m,n} = \frac{{}^{m} p_{m,n}}{1 + {}^{m} p_{m,m}};$$
(3.80)

$${}^{m}\widetilde{T}_{m,n} = {}^{m}T_{m,n} + \frac{{}^{m}T_{m,m} \cdot {}^{m}p_{m,m}}{1 - {}^{m}p_{m,m}}; \qquad (3.81)$$

расщепление вершин;

$$\hat{p}_{n,k} = {}^{m} p_{n,m} \cdot {}^{m} \tilde{p}_{m,k}; \qquad (3.82)$$

$$\hat{T}_{n,k}(t) = {}^{m}T_{n,m} + {}^{m}\tilde{T}_{m,k}; 1 \le n,k \le m - 1;$$
(3.83)

объединение дуг

$${}^{m-1}p_{n,k} = {}^{m}p_{n,k} + \hat{p}_{n,k};$$
 (3.84)

$${}^{m-1}T_{n,k} = \frac{{}^{m}p_{n,k} \cdot {}^{m}T_{n,k} + \hat{p}_{n,k} \cdot \hat{T}_{n,k}}{{}^{m-1}p_{n,k}}.$$
(3.85)

Таким образом, метод последовательных упрощений позволяет получить требуемые характеристики (в данном случае временной интервал мнжду транзакциями) с заданной точностью и обладает низкой вычислительной сложностью.

3.5. Выводы

1) Предложен общий метод расчета вероятностных и временных характеристик блуждания по полумарковскому процессу, основанный на том, что полумарковскую матрицу преобразуют в характеристическую, которую возводят в степень, затем степени характеристической матрицы суммируют.

2) С использованием общего метода решены задачи определения вероятностных и временных характеристик блуждания по полумарковскому процессу от одного состояния до другого, а также возврата в одно из состояний.

3) Разработан метод прямого расчета временных и вероятностных характеристик комплексного блуждания между состояниями и возврата в состояние с использованием только операций с числовыми матицами: стохастической, математических ожиданий и дисперсий, характеризующих элементы исходной полумарковской матрицы.

4) Предложен метод последовательного упрощения полумарковского процесса с понижением размерности матрицы и рекурсивным пересчетом значений элементов стахостической матрицы, матрицы математических ожиданий и матрицы дисперсий.

4. ТЕХНИЧЕСКАЯ РЕАЛИЗАЦИЯ ЦИФРОВОЙ СИСТЕМЫ УПРАВЛЕНИ МО

В п.1.2.6-1.2.9 описаны характерные особенности цифровых систем управления, в том числе стохастические свойства детерминированных алгоритмов. В соответствии с аналитическим обзором МО, приведённом в разделе 1, система управления МО может быть разделена на несколько иерархических уровней: стратегический, тактический и функционально-логиеский.

Круг задач, решаемых на стратегическом уровне управления сводится к получению ЭВМ пункта управления общей команды от оператора, в соответствии с которой генерируется последовательность решаемых задач, направляемая в систему управления тактического уровня.

На тактическом уровне, собственно контроллер МО получает в реальном времени команды на решение задач, после чего, в соответствии с текущей обстановкой и структурным состоянием МО модифицируется управляющий алгоритм и генерируется вектор управляющих команд, передающийся в отдельные единицы оборудования, составляющего МО, формирующие функционально-логический уровень системы управления.

На функционально-логическом уровне происходит реализация алгоритмов оборудованием МО. При этом, замыкаются обратные связи, осуществляется синхронизация работы узлов и агрегатов по времени, энергетике и другим ресурсам, осуществляется обработка данных с сенсорорной подсистемы и т.п.

Применение ЭВМ Фон-Неймановского типа, для реализации управления узлами и агрегатами на функционально-логическом уровне управления, предполагает, во-первых, дискретизацию информации, поступающей от массива сенсоров, а во-вторых, временную задержку при обработке данных, связанную с последовательной интерпретацией операторов алгоритма управления. Интервалы дискретизации должны удовлетворять требованиям теоремы Котельникова [36, 40, 121], а время обработки данных должно обеспечивать требуемые показатели качества управления [40]. Все это требует построения адекватной модели обработки данных и принятие на основании моделирования инженерных решений по структуре системы ввода и обработки данных.

Рассмотрим задачу обработки данных, получаемых Фон-Неймановской ЭВМ функционально-логического уровня от одной единицы оборудования

4.1. Математическая модель обработки данных на ЭВМ Фон Неймановского типа

В соответствии с общепринятым методом [80, 81, 89, 90, 91] функционирование системы представлено в виде объединения полумарковских процессов: процесса ${}^{1}\mu$, моделирующего собственно обработку данных на ЭВМ, и процесса ${}^{2}\mu$ моделирующего процедуру полинга (рис. 4.1)

$$\mu = {}^{1}\mu \cup {}^{2}\mu \,. \tag{4.1}$$

Полумарковский процесс, описывающий функционирование ЭВМ задаётся следующим образом:

$${}^{1}\boldsymbol{\mu} = \left\{ {}^{1}\boldsymbol{A}, {}^{1}\mathbf{h}(t) \right\}, \tag{4.2}$$

где ${}^{1}A = \{a_{1}, a_{2}, ..., a_{n}, ..., a_{N}\}$ - множество состояний; ${}^{1}\mathbf{h}(t) = [{}^{1}\mathbf{h}_{mn}(t)]$ - полумарковская матрица размером $N \times N$; $h_{mn}(t)$ - взвешенные плотности распределения времени пребывания в состоянии; t – время; a_{N} - состояние, моделирующее ввод команды на передачу данных в единицк оборудования, a_{1} состояние, моделирующее ввод данных из единицы оборудования в ЭВМ, $a_{2} \div a_{n-1}$ - состояния, моделирующие прочие операторы алгоритма обработки измерительной информации.

В свою очередь, полумарковский процесс ² µ, описывающий ввод данных с единицы оборудвания задаётся следующим образом:

$${}^{2}\boldsymbol{\mu} = \left\{ {}^{2}\boldsymbol{A}, {}^{2}\mathbf{h}(t) \right\}, \tag{4.3}$$

где ${}^{2}A = \{b_{1}, b_{2}, ..., b_{k}, ..., b_{K}, a_{1}, a_{N}\}$ - множество состояний; ${}^{2}\mathbf{h}(t) = [{}^{2}\mathbf{h}_{ke}(t)]$ - полумарковская матрица размером $(M + 2) \times (M + 2)$; $h_{ke}(t)$ - взвешенные плотности распределения; где b_{k} - состояния, моделирующие команды протокола обмена данными между единицей оборудования и ЭВМ, реализуемые аппаратно.

Рисунок 4.1. - Структура полумарковского процесса обработки данных а - полумарковский процесс, описывающий функционирование ЭВМ; б – полумарковский процесс, описывающий ввод данных от единицы оборудования.

На пересечении полумарковских процессов ¹µ и ²µ лежат состояния, которые инициализируют начальные и завершающий циклы обмена данными

$${}^{1}A \cap {}^{2}A = \{a_{1}, a_{N}\}. \tag{4.4}$$

4.2. Оценка временных интервалов

Полумарковский процесс ¹µ, показанный на рис. 4.1 а характеризуется следующей полумарковской матрицей

$${}^{1}\mathbf{h}(t) = \begin{pmatrix} 0 & {}^{1}h_{12} & \dots & {}^{1}h_{1n} & \dots & {}^{1}h_{1N} \\ 0 & {}^{1}h_{22} & \dots & {}^{1}h_{2n} & \dots & {}^{1}h_{2N} \\ & & & \dots & & \\ 0 & {}^{1}h_{m2} & \dots & {}^{1}h_{mn} & \dots & {}^{1}h_{mN} \\ & & & \dots & & \\ 0 & 0 & \dots & 0 & \dots & 0 \end{pmatrix}.$$
(4.5)

В соответствии с методом, приведенным в разделе 3, плотность распределения времени, затрачиваемого на обработку данных, определяется по зависимости

$${}^{1}f(t) = L^{-1}\left(\left[1, 0, \dots, 0, \dots, 0, \right] \cdot \sum_{c=1}^{\infty} \left\{ L \left[{}^{1}\mathbf{h}(t)\right] \right\}^{c} \cdot \left[0, \dots, 0, \dots, 0, 1\right]^{\xi} \right),$$
(4.6)

где L и L^{-1} - прямое и обратное преобразования Лапласа соответственно, ξ – оператор транспонирования; [1, 0, ..., 0, ..., 0,]и $[0, ..., 0, ..., 0, 1]^{\xi}$ векторы, имеющие размер N.

Из (4.6), для полумарковского процесса ¹µ могут быть получены математическое ожидание времени возврата в состояние и дисперсия

$${}^{1}T(t) = \int_{0}^{\infty} t \cdot {}^{1}f(t)dt; \qquad (4.7)$$
$${}^{1}D = \int_{0}^{\infty} \left[t - {}^{1}T(t)\right]^{2} \cdot {}^{1}f(t)dt.$$

Полумарковский процесс ${}^{2}\mu$, показанный на рис. 1 б характеризуется следующей полумарковской матрицей

$${}^{2}\mathbf{h}(t) = \begin{pmatrix} 0 & {}^{2}h_{0,2} & \dots & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & 0 \\ & & & \dots & & & & \\ 0 & 0 & \dots & 0 & {}^{2}h_{m,n} & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & 0 \\ & & & \dots & & \dots & 0 & {}^{2}h_{M,K+1} \\ 0 & 0 & \dots & & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix},$$
(8)

Из (4.8) может быть получена плотность распределения времени на ввод данных, определяемая по зависимости

$${}^{2}f(t) = L^{-1}\left(\left[1, 0, \dots, 0, \dots, 0, \right] \cdot \sum_{n=c}^{\infty} \left\{ L\left[{}^{2}\mathbf{h}(t)\right] \right\}^{c} \cdot \left[0, \dots, 0, \dots, 0, 1\right]^{\xi} \right),$$
(4.9)

где [1, 0, ..., 0, ..., 0,]и $[0, ..., 0, ..., 0, 1]^{\xi}$ векторы, имеющие размер M+2.

Из (4.9), для полумарковского процесса ² µ могут быть получены математическое ожидание времени возврата и дисперсия

$${}^{2}T(t) = \int_{0}^{\infty} t \cdot {}^{2}f(t)dt; \qquad (4.10)$$
$${}^{2}D = \int_{0}^{\infty} \left[t - {}^{2}T(t)\right]^{2} \cdot {}^{2}f(t)dt.$$

Допустим, что в существующей системе реализован протокол SPI последовательного обмена [122]. Работа по указанному протоколу предполагает стабильную частоту ввода данных, поэтому, зависимость (4.9) для плотности распределения времени достижения состояния a_1 из состояния a_N может быть упрощена и принимает вид

$$f_{\Sigma} = \delta \left(t - \sum_{k=1}^{3} C_k \tau \right)$$
(4.11)

где δ - функция Дирака; τ - период сигнала тактирования, определенный протоколом соответствующего интерфейса; C_k - количество тактовых импульсов (включая паузы), формируемых при вводе одного слова данных в *k*-м операторе, включающее количество бит в командной посылке, подаваемой на вход единицы оборудования и количество бит в слове данных, выдаваемых единицей оборудования.

Для единицы оборудования, используемого в существующей системе, необходимо осуществить ввод трёх слов измерительной информации. Каждое слово информации передаётся за $C_{посылки} = 26$ тактовых импульсов, включая две паузы. Таким образом, при частотах, разрешенных протоколом до 10 МГц, вре-

мя на ввод данных составляет не менее ${}^{2}T' = 7,8 \ M\kappa C$. При реализации общего алгоритма ввода и обработки данных со структурой, показанной на рис. 1, формируется ранее известная циклограмма, показанная на рис. 1.10, а оценка шума полинга и ошибок дискретизации может быть проведена с использованием (1.2.10) - (1.2.14).

Для улучшения временных характеристик ввода информации в Фон-Неймановскую ЭВМ, со стороны единиц оборудования, и исключения случайного фактора предлагается:

разделить процессы опроса единиц бортового оборудования и процесс ввода данных в ЭВМ;

ввести буферное устройство между множеством единиц бортового оборудования и ЭВМ, позволяющее производить опрос каждой единицы оборудования автономно, без участия ЭВМ и сохранять информацию до появления потребности в ней со стороны ЭВМ;

осуществлять ввод информации в ЭВМ Фон Неймановского типа по параллельному интерфейсу, что сократит процедуру собственно ввода.

Буферное устройство [123, 124] включает последовательный регистр, заполняемый со стороны идиницы оборудования, параллельные буферные регистры, опрашиваемые со стороны ЭВМ, и схему управления, реализованую в виде конечного автомата Мура.

Указанное буферное устройство реализует циклограмму функционирования системы стабилизации которая показана на рис. 4.2.

Рисунок 4.2. – Циклограмма операции обработки данных с буферным устройством

Цикл включает два следующие процессы:

обработку данных в ЭВМ Фон Неймановского типа (временная задержка ¹*T*);

опрос единицы оборудования в буферное устройство (временная задержка ^{2}T);

собственно ввод информации в Фон-Неймановскую ЭВМ по параллельному интерфейсу (временная задержка ³T).

В случае параллельной системы процесс ${}^{2}\mu$ опроса «соревнуется» с процессом ${}^{1}\mu$ обработки информации, при этом формируются потоки транзакций, на «заполнение» буферных регистров (отсчёты, следующие через временной интервал τ_{∂} дискретизации) и потоки транзакций по «опорожнению» буферных регистров (отсчёты, следующие через временной интервал ${}^{1}T$ обработки данных в ЭВМ) [14, 22, 23, 119]. Возможны три случая:

временной интервал τ_{∂} дискретизации значительно меньше временного интервала ¹T обработки данных в ЭВМ. В соответствии с циклограммой, показанной на рис. 4.3, ввод информации в ЭВМ Фон Неймановского типа происходит во временных интервалах ³T, следующих через промежутки времени ¹T. Следовательно, в ЭВМ вводятся информация, полученная на последней транзакции, перед появлением отсчёта ¹T. Таким образом, происходит большая потеря данных;

временной интервал τ_{∂} дискретизации больше временного интервала ${}^{1}T$ обработки информации в ЭВМ. Показанный случай не позволяет добиться требуемой точности управления МО, в ЭВМ вводятся не актуальные данные, происходит потеря информации;

временной интервал τ_{∂} дискретизации равен временному интервалу ${}^{l}T$ обработки данных в ЭВМ. В этом случае, процессы заполнения и «опорожнения» буфера согласуются во времени, потери информации не происходит, в ЭВМ вводятся актуальные данные, удовлетворяющие требованиям теоремы Котельникова.

Для оценки временных характеристик «соревнования» процессов заполнения/«опорожнения» буферных регистров может быть использован 2параллельный полумарковский процесс определяемый как множество, состоящее из двух ординарных полумарковских процессов:

$${}^{3}\mu = \bigcup_{x=1}^{2} \mu_{x}^{3}; \qquad (4.22)$$

$$\mu_{x}^{3} \cap \mu_{3}^{3} = \begin{cases} \varnothing, & \text{KOZDA} \ x \neq y; \\ \mu_{x}^{3}, & \text{UHAVE}; \end{cases}$$

$${}^{3}\mu_{x} = \left\{{}^{3}G_{x}, {}^{3}\mathbf{h}_{x}(t)\right\}, \qquad (4.23)$$

где μ_x^3 - ординарный полумарковский процесс; ${}^3G_x = \{g_1^x, ..., g_r^x, ..., g_R^x\}$ множество состояний; g_1^1 - состояние, в котором полумарковский процесс опроса находится в режиме ожидания; g_1^2 - состояние, в котором полумарковский процесс обработки данных находится в режиме ожидания; g_2^1 - состояние, в котором полумарковский процесс обработки данных генерирует транзакцию на «опорожнение» буферного регистра; g_2^2 - состояние, в котором полумарковский процесс опроса генерирует транзакцию по «заполнению» буферных регистров ; ${}^3\mathbf{h}_x(t) = [{}^3h_{(x)bd}(t)] = {}^3p_x \otimes {}^3f_x(t)$ - полумарковская матрица размером $X \times X$; ${}^3p_x = \int_{0}^{\infty} {}^3\mathbf{h}_x(t) dt = [{}^3p_{b(x),d(x)}]$ - стохастическая матрица размером

$$X \times X; \ {}^{3}f_{x}(t) = \left[\frac{{}^{3}h_{(x)bd}(t)}{{}^{3}p_{b(x),d(x)}}\right] = \left[{}^{3}f_{(x)bd}(t)\right]$$
 - матрица чистых плотностей распре-

деления.

Структура процесса (4.23) показана на рис. 4.3 а. Подобные процессы являются эргодическими полумарковскими процессами [95, 96, 97, 98].

Рисунок 4.3. – Параллельный (а) и комплексный (б) полумарковские процессы

Структура 2-параллельного полумарковского процесса показана на рис. 4 б. Этот процесс определяется следующим образом:

$${}^{3}\boldsymbol{\mu} = \left\{ {}^{3}\boldsymbol{Q}, {}^{3}\mathbf{h}(t) \right\}, \tag{4.24}$$

где ${}^{3}Q = \left\{ {}^{3}q_{1}, {}^{3}q_{2}, {}^{3}q_{2}, {}^{3}q_{2} \right\}; {}^{3}q_{1}$ - состояние, в котором полумарковские процессы опроса и обработки данных находятся в состояниях g_{1}^{1} и g_{1}^{2} соответственно; ${}^{3}q_{2}$ - состояние, в котором полумарковские процессы опроса и обработки данных находятся в состояниях g_{2}^{1} и g_{2}^{2} соответственно; ${}^{3}q_{3}$ - состояние, в котором полумарковские процессы опроса и обработки данных находятся в состояниях g_{1}^{1} и g_{2}^{2} соответственно; ${}^{3}q_{4}$ - состояние, в котором полумарковские процессы опроса и обработки данных находятся в состояниях g_{1}^{1} и g_{2}^{2} соответственно; ${}^{3}q_{4}$ - состояние, в котором полумарковские процессы опроса и обработки данных находятся в состояниях g_{2}^{1} и g_{2}^{2} соответственно; ${}^{3}h(t) = \left[{}^{3}h_{up}(t) \right] = {}^{3}p \otimes {}^{3}f(t)$ - полумарковская матрица размером 4×4 ; ${}^{3}p = \int_{0}^{\infty} {}^{3}h(t)dt = \left[{}^{3}p_{up} \right]$ - стохастическая матрица размером 4×4 ; ${}^{y}f_{x}(t) = \left[{}^{3}h_{up}(t) \right] = \left[{}^{3}f_{up}(t) \right]$ - матрица чистых плотностей распределения раз-

мером 4×4 .

Полумарковский процесс ³ *µ* характеризуется следующей полумарковской матрицей

$${}^{3}\mathbf{h}(t) = \begin{pmatrix} 0 & {}^{3}h_{12} & 0 & {}^{3}h_{14} \\ {}^{3}h_{21} & 0 & {}^{3}h_{23} & 0 \\ 0 & {}^{3}h_{32} & 0 & {}^{3}h_{34} \\ {}^{3}h_{41} & 0 & {}^{3}h_{43} & 0 \end{pmatrix}$$
(4.25)

Если привязать параметры процесса (4.24) к параметрам процессов ${}^{1}\mu$ и ${}^{2}\mu$, тогда математическое ожидание времени между заполнением и «опорожнением» буферных регистров определяется по зависимости

$${}^{3}T = {}^{3}T \left({}^{3}q_{1} \right) + T \left({}^{3}q_{3} \right)$$
(4.26)

Из (4.25) может быть получена плотность распределения времени пребывания процессом ${}^{3}\mu$ в состоянии ${}^{3}q_{1}$, определяемая по зависимости

$${}^{3}f_{3_{q_{1}}}(t) = L^{-1}\left(\left[1, 0, 0, 0\right] \cdot \sum_{n=c}^{\infty} \left\{L\left[{}^{3}\mathbf{h}(t)\right]\right\}^{c} \cdot \left[0, 0, 1, 0\right]^{\xi}\right),$$
(4.27)

где [1, 0, 0, 0,]и $[0, 0, 1, 0]^{\xi}$ векторы, имеющие размер 4, и плотность распределения времени пребывания процесса ³ μ в состоянии ³ q_3 , определяемая по зависимости

$${}^{3}f_{3}{}_{q_{3}}(t) = L^{-1}\left(\left[0, 0, 1, 0 \right] \cdot \sum_{n=c}^{\infty} \left\{ L \left[{}^{3}\mathbf{h}(t) \right] \right\}^{c} \cdot \left[1, 0, 0, 0 \right]^{\xi} \right),$$
(4.28)

где [0, 0, 1, 0,]и $[1, 0, 0, 0]^{\xi}$ векторы, имеющие размер 4.

Тогда, время между заполнением и «опорожнением» буферных регистров определяется зависимостью (4.26), которая, с учётом (4.27) и (4.28) примет вид

$${}^{3}T = \int_{0}^{\infty} t \cdot {}^{3}f_{3}{}_{q_{1}}(t)dt + \int_{0}^{\infty} t \cdot {}^{3}f_{3}{}_{q_{3}}(t)dt .$$
(4.29)

Привязываясь к параметрам процессов ${}^{1}\mu$ и ${}^{2}\mu$ максимальное время между заполнением и «опорожнением» буферных регистров определяется зависимостью (4.29), а минимальное время будет равно времени ${}^{1}T$ обработки измерительных данных.

101

Приведённые теоретические положиения и рекомендации реализованы в виде пустройства преобразования последовательного интерфейса в параллельный, структурная схема которого приведена Приложении 1.

4.3. Экспериментальное подтверждение заявленных теоретических положений

Для подтверждения теоретических положений, изложенных в п.4.1 и 4.2 был проведен прямой эксперимент.

Для моделирования, в качестве единицы оборудования, использовался: сенсор трехосного гироскопа L3G4200D;

устройство преобразования последовательного интерфейса в параллельный, реализованное на ПЛИС Altera семейства МАХ II [125] (Приложение 1);

Фон-Неймановская ЭВМ Raspberry pi 3 b+, осуществляющий ввод и обработку данных.

Эксперимент направлен на анализ «соревнования» процессов :

заполнения буферных регистров устройства преобразователя последовательного интерфейса в параллельный интерфейс;

опрос буферных регистров со стороны Фон-Неймановской ЭВМ, выполняющей алгоритм обработки данных.

На рис.4.4 показана скриншот экрана цифрового осциллографа UTD2102CEX, где процесс опроса буферных регистров со стороны Фон-Неймановской ЭВМ отображает 1-й канал, а процесс заполнения буферных регистров устройства преобразования последовательного интерфейса в параллельный интерфейс отображается 2-м каналом.

Для оценки временного интервала между обновлением данных в буферных регистрах устройства преобразования последовательного интерфейса в параллельный интерфейс измеряется время между двумя опросами, приходящими со стороны ЭВМ. Для измерения временного интервала включена функция «курсорных измерений».

Рисунок 4.4. – Осциллограмма эксперимента

По результатам эксперимента можно сделать следующие выводы:

временной интервал тS между отсчетами заполнения буферных регистров устройства преобразования последовательного интерфейса в паараллельный интерфейс стабилен и равен 8,6 мкс (возможности отладочной платы ПЛИС не позволяют получить более высокую частоту опроса);

временной интервал ${}^{1}T$ обработки данных является случайным и превышает временной интервал ${}^{2}T$ дискретизации.

Таким образов, результат эксперимента однозначно показывает, что запросы на ввод данных действительно генерируются Фон-Неймановской ЭВМ через случайные промежутки времени. Применение устройства преобразования последовательного интерфейса в параллельный интерфейс позволяет стабилизировать временной интервал опроса, что, в свою очередь, обеспечит ЭВМ корректными данными.

К недостаткам приведённого устройства преобразования последовательного интерфейса в параллельный интерфейс относится потеря большого объема данных, в том случае, если временной интервал τ_{∂} дискретизации значительно

103

меньше временного интервала T обработки данных в ЭВМ. Избежать потери данных позволяет буферизация вводимых в ЭВМ данных.

4.4. Буферизация данных

4.4.1 Модель буферизации данных

Прибегая к буферизации, возможно исключить потерю данных. Сенсор записывает данные в FIFO буфер, ограниченной длины.

Таким образом, получается система, имеющая, в общем случае n обслуживаемых элементов и n очередей – FIFO буферов.

В том случае, если происходит ситуация с переполнением буфера, то есть очередь заявок на обслуживание полна и не сокращается, а заявки продолжают приходить, случается отказ системы.

В тоже время, необходимо оценивать, запаздывание контуров управления, вызванное созданием очереди данных в FIFO буферах.

На рис.4.5 в показана функциональная схема цифрового контура управления с буферизацией данных.

Рисунок 4.5. – Структура 2-параллельного полумарковский процесс заполнения буфера (а), опустошения буфера (б) и функциональная схема цифрового контура управления с буферизацией данных (в) Система функционирует следующим образом. Данные сенсора преобразуются в последовательность цифровых кодов и поступают на вход FIFO_n буфера для дальнейшей передачи их на обработку в ЭВМ Фон Неймановского типа. ЭВМ опрашивает FIFO_n буфера с помощью процедуры полинга, выполняет обработку даныых и генерирует управляющее воздействие на вход объекта управления . В приведенной схеме присутствуют два субъекта, функционирующих каждый по своему алгоритму:

сенсор, передающий цифровые данные через строго постоянные промежутки времени, которые должны удовлетворять требованиям теоремы об отсчётах для исключения потерь информации и сокращения шума дискретизации;

ЭВМ Фон Неймановского типа, генерирующая сигналы транзакций опроса буферов и выполняющая операцию выработки управляющих кодов;

Для оценки времени прохождения сигнала по контурам управления и объемов FIFO_n буфера может быть построена модель, представляющая собой 2-параллельный полумарковский процесс вида

$$\boldsymbol{\mu} = \left\{ {}^{I}\boldsymbol{\mu}, {}^{2}\boldsymbol{\mu} \right\}; \tag{4.30}$$

$${}^{i}\mu = \left\{{}^{i}A, {}^{i}h(t)\right\}, i = 1, 2,$$
 (4.31)

где ${}^{1}\mu$ - процесс, описывающий ввод данных в FIFO_n буфер; ${}^{2}\mu$ - процесс, описывающий обработку данных, ${}^{i}A$ - множество состояний; ${}^{i}h(t)$ - полумарковская матрица; *t* - время.

Полумарковские процессы (4.30) являются эргодическими. В самом общем случае структуры подобных процессов представляют собой полные графы с петлями, приведенные на рис. 4.5 (а, б).

Процесс ¹µ имеет вид:

$${}^{i}\mu = \{\!\!\{ia\}\!\!, {}^{i}h(t)\}\!\!, i = 1, 3,$$

$$(4.32)$$

где $\{i a\}$ - множество, состоящее из единственного состояния генерации транзакций; $h(t) = \delta(t - i T)$; $\delta(...)$ - δ -функция Дирака; iT - период следования транзакций; i = 1, 2 (рис. 4.5 а).

Структура полумарковского процесса ${}^{2}\mu$ показана на рис. 1 б. В указанном процессе $|{}^{2}A| = J$; ${}^{2}h(t) = [h_{mn}(t)]$ - полумарковская матрица размером $J \times J$; $h_{mn}(t)$ - взвешенные плотности распределения;

$${}^{2}A = \left\{ {}^{2}a_{1}, {}^{2}a_{2}, {}^{2}a_{J} \right\};$$
(4.33)

где ${}^{2}a_{1}$ – состояние, генерации запросов на опорожнение FIFOn буфера; ${}^{2}a_{2}$ - состояние, модерирующее генерацию управляющего воздействия на объект управления, со стороны Фон-Неймановской ЭВМ; ${}^{2}a_{J}$ - состояние, моделирующее иные состояния алгоритма управления, заложенного в цифровую систему управления.

В полумарковском процессе ${}^{2}\mu$ ввввв транзакции генерируются при каждом переключении процесса из состояния ${}^{1}a$ в состояние ${}^{1}a$. В полумарковском процессе ${}^{2}\mu$ транзакция на опустошение FIFO_n буфера генерируется при переключении в состояние

Методами, приведенными в разделе 3, полумарковский процесс ${}^{2}\mu$ может быть упрощен до процесса ${}^{2}\tilde{\mu}$, включающих только состояния генерации транзакций:

$${}^{2}\boldsymbol{\mu} \rightarrow {}^{2}\boldsymbol{\tilde{\mu}} = \left\{ {}^{2}\boldsymbol{\tilde{A}}, \; {}^{2}\boldsymbol{\tilde{h}}\left\{t\right\} \right\}, \tag{4.34}$$

где ${}^{2}\tilde{A} = \{{}^{2}\tilde{a}_{1}, {}^{2}\tilde{a}_{2}, {}^{2}\tilde{a}_{5}\}$ - сокращенное множество вершин; ${}^{2}\tilde{h}(t) = [\tilde{h}_{mn}(t)]$ - полумарковская матрица размером $S \times S$; $1 \le m, n \le S$.

4.4.2 Оценка вероятности сбоя системы, вызванного переполнением буфера. Вычисление объёма буфера

Для оценки состояния FIFO_n буфера вводится допущение о том, что полумарковские процессы ${}^{1}\mu$ являются строго Марковскими с непрерывным временем, и потоки транзакций при заполнении FIFO_n являются пуассоновскими [128], т.е.

$${}^{l}h(t) = \frac{1}{{}^{l}T} exp\left(-\frac{t}{{}^{l}T}\right), \tag{4.35}$$

Сделанное допущение позволяет применить для оценки состояний буферов теорию массового обслуживания [86, 99]. Структура каждого буферизированного канала представляет собой систему массового обслуживания (СМО) с одним обслуживающим прибором и ограниченной длиной очереди.

FIFO_n буфер – абстрактный буфер, максимальное число ячеек которого равно *m*.

Сбой системы происходит в том случае, когда возникает ситуация: FIFO_n буфер полон, занято *m* ячеек. В этот момент времени приходит заявка на обслуживание от Сенсора_n. Если эта заявка не будет обслужена, то есть за период $(t - {}^{t}T)$, то заявка уйдёт не обслуженной. Это и есть сбой или отказ системы.

В [86, 99] приводится общая зависимость для нахождения отказа СМО с ограниченной очередью

$$p_{nfail} = \frac{\frac{\alpha^n}{n!}}{\sum_{k=0}^n \frac{\alpha^k}{k!} + \frac{\alpha^n}{n!} \sum_{s=1}^m \left(\frac{\alpha}{n}\right)^s}.$$
(4.36)

где *n* – количество каналов в СМО, *k* – текущее число занятых каналов, *m* – число ячеек буфера, *s* – текущее число заполненных ячеек.

Для СМО, содержащей одно обслуживаемое устройство, и один канал, ёмкостью *m*, зависимость (4.36) примет вид

$$p_{fail} = \frac{\alpha^n}{\sum_{s=0}^m \alpha^s}.$$
(4.37)

Сбой системы происходит тогда, когда все ячейки буфера заполнены

Из частного случая получить зависимость для полностью занятого буфера, когда *s* = *m*.

В этом случае, зависимость (4.37) примет вид

$$p_{fail} = \frac{\alpha^m}{\sum_{s=0}^m \alpha^s}.$$
(4.38)

Выполнив умножение обеих частей (4.38) на *а*-1, будем иметь

$$p_{fail} = \frac{\alpha^m \left(\alpha - 1\right)}{\alpha^{m+1} - 1}.$$
(4.39)

Таким образом, из (4.39) получается зависимость позволяющая найти объём буфера

$$m \ge \frac{\ln p_{fail} \cdot \ln \left[1 - \alpha \left(1 - p_{fail} \right) \right]}{\ln \alpha}, \qquad (4.40)$$

где α - соотношение между математическими ожиданиями плотностей распределения времени заполнения и опорожнения абстрактного буфера; *p*_{fail} - допустимая вероятность сбоя из-за переполнения буфера; *m* - объем буфера.

4.4.3. Определение математического ожидания времени между двумя последовательными транзакциями

Определим значения математического ожидания времени T_i между двумя последовательными транзакциями в соответствующем потоке

Процесс 2 $\tilde{\mu}$ является эргодическим. При каждом переключении полумарковского процесса 2 $\tilde{\mu}$ генерируется одна транзакция в FIFO_n буфер. Для внеш-
$$\pi_m = \frac{T_m}{\theta_m},\tag{4.41}$$

где T_m - математическое ожидание времени пребывания процесса ${}^2 \tilde{\mu}$ в состоянии ${}^2 \tilde{a}_m \in {}^2 \tilde{A}$; θ_m - время возврата в состояние ${}^2 \tilde{a}_m \in {}^2 \tilde{A}$.

Время Т_т определяется по зависимости

$$T_m = \int_0^\infty t \cdot \sum_{m=1}^S \tilde{h}_{mn}(t) dt . \qquad (4.42)$$

Для определения θ_m расщепим ${}^2 \tilde{a}_m$ на ${}^{2b} \tilde{a}_m$ и ${}^{2e} \tilde{a}_m$. Это осуществляется за счет переноса столбца матрицы ${}^2 \tilde{h}(t)$ с номером *m* в столбец с номером *S*+1,. Столбец с номером *m* и строка с номером *S*+1 заполняются нулями. В результате этого формируется матрица ${}^2 \tilde{h}'(t)$, имеющая размер (*S*+1)×(*S*+1), Математическое ожидание времени возврата определяется по следующей зависимости:

$$\theta_m = \int_0^\infty t \cdot L^{-1r} \boldsymbol{I}_{S+1} \cdot \sum_{k=1}^\infty \{ L[\boldsymbol{\tilde{\mu}}'(t)] \}^k \cdot {}^c \boldsymbol{I}_m dt , \qquad (4.43)$$

где ${}^{c}I_{m}$ - вектор-столбец, имеющий размер S + 1, *m*-й элемент которого равен единице, а остальные элементы равны нулю; ${}^{r}I_{m}$ - вектор-строка, имеющий размер S + 1, (S + 1)-й элемент которого равен единице, а остальные элементы равны нулю; $L[...], L^{-1}[...]$ - прямое и обратное преобразования Лапласа.

С учетом (4.35) и свойства эргодичности полумарковского процесса, плотности распределения времени между двумя транзакциями в FIFO_n буфер будет равна

$$f_{UU}(t) = \frac{\sum_{m=1}^{U} \pi_m \sum_{n=1}^{U} \tilde{h}_{mn}(t)}{\sum_{m=1}^{U} \pi_m \sum_{n=1}^{U} \tilde{p}_{mn}};$$
(4.44)

где $\tilde{p}_{mn} = \int_{0}^{\infty} \tilde{h}_{mn}(t) dt$.

Вследствие того, что транзакции генерируются в результате блужданий по состояниям полумарковских процессов, транзакции, сгенерированные по каждой отдельной траектории, могут рассматриваться как отдельный поток, а генерация по множеству возможных траекторий может рассматриваться как объединение потоков транзакций. В соответствии с теоремой Б. Григелиониса [129], подобный суммарный поток является пуассоновским. Следовательно, можно ввести ограничение на плотности распределения времени между транзакциями, и считать, что процесс является строго Марковским с непрерывным временем [95, 96, 98], а указанные плотности описываются следующим образом:

$${}^{2}f_{i}(t) = \frac{1}{{}^{2}T_{i}} \exp\left(-\frac{t}{{}^{2}T_{i}}\right), \ i = 1, 3,$$
(4.45)

где
$${}^{2}f_{1}(t) = f_{UU}(t); {}^{2}f_{3}(t) = f_{SS}(t); {}^{2}T_{i} = \int_{0}^{\infty} t \cdot {}^{2}f_{i}(t)dt$$
 $i = 1, 3$ - математиче-

ское ожидание времени между двумя последовательными транзакциями в соответствующем потоке.

Плотности отличаются от экспоненциальных, следовательно, зависимость для распределения вероятностей получена с ошибкой.

4.4.4. Алгоритм Монте-Карло для экспериментальной оценки длинны очереди

Управление невозможно, если не организована обратная связь. Если в системе, рис.4.5, в разомкнуть связь Сенсор_n – FIFO_n, объект управления перестанет быть управляемым. Такая ситуация может возникнуть в том случае, если – FIFO_n будет переполнен и в положенный момент времени данные с Сенсор_n не были в него записаны. В случае, когда связь Сенсор_n – FIFO_n однозначно замкнута, то FIFO_n имеет свободные ячейки для записи данных или пуст – объект управления – управляем.

Поэтому важно оценивать ёмкость буфера, находящегося в цепи обратной связи.

Оценим величину ошибки по методу Монте-Карло.

Моделирование осуществлялось в предположении, что функция плотности распределения запросов ЭВМ на опорожнение буфера соответствует произвольному закону распределения.

Алгоритм компьютерного эксперимента, реализующего метод Монте-Карло для сбора статистики длины очереди реализует два процесса, протекающих в системе: процесс обращения буфера к датчику с детерминированным временем опроса датчика и процесс программного обращения к буферу со случайным периодом между обращениями, определенным равномерным законом распределения.

Компьютерный эксперимент проводится по следующему алгоритму:

1) Обнуление программного счётчика времени t_j, обнуление вероятностей занятости ячеек;

2) Запуск программного счётчика, отсчитывающего t_i;

3) Запуск процедуры генерации процесса обращения Сенсор_n к FIFO_n с детерминированным временем t_s;

4) Запуск генератора случайных чисел и получение случайного числа с произвольным распределением;

5) Пересчет времени, Т_j, обращения ЭВМ к FIFO_n в соответствии с установленным законом распределения;

6) Если количество ячеек m не заполнено, то при $t_s = t_j$ происходит запись в ячейку;

7) При совпадении содержимого программного счётчика со случайной величиной времени обращения ЭВМ к FIFO_n происходит освобождение ячейки;

8) Сбор статистики длинны очереди, в соответствии с отсчётами программного счётчика, t_s;

7) Повторение пунктов 4 – 8 достаточно большое количество раз.

В результате моделирования была получена статистика распределения длины очереди буфера, при равновероятном законе распределения обращений ЭВМ к буферу – рис.4.6.

Предположение о том, что распределение очереди будет носить экспоненциальный характер не совсем верно, но имеет место быть использовано в инженерной практике. Для его использования, необходимо вводить поправку в (4.39), для чего необходимо учесть, что в СМО с ограниченной длиной очереди вероятность отказа равна вероятности того, что все ячейки будут заняты, т.е.

Рисунок 4.6. Статистика *P_{fail}* распределения длины очереди *S* абстрактного буфера, при нормальном законе распределения обращений ЭВМ к буферу.

Из (4.46) может быть получено необходимое количество ячеек N^* для обеспечения заданного уровня надежности

$$N^{*} \ge \frac{\ln p^{*} - \ln \left[1 - \alpha \left(1 - p^{*}\right)\right]}{\ln \alpha}$$
(4.47)

(4.48)

где $p^* = p_N$ - допустимая вероятность отказа из-за переполнения буфера..

113

Перепишем зависимость (4.46) в виде

$$p^* = \frac{\alpha^N (1-\alpha)}{(1-\alpha^N) - \alpha^N (1-\alpha)}.$$

Если *N* достаточно велико, $\alpha < 1$, то $(1-\alpha^N) \approx 1$, и
$$p^* \approx \frac{\alpha^N (1-\alpha)}{1-\alpha^N (1-\alpha)}.$$

Вышеизложенные положения о буферизации данных дополняют изложенные в п.4.1-4.3 положения о преобразовании интерфейсов. Использование инженерных решений [125] и [130] в составе цифровых систем управления функционально-логического уровня иерархии позволит нивелировать особенности функционирования цифровых контроллеров.

4.5. Выводы

1) Разработана математическая модель обработки данных Фон-Неймановской ЭВМ и показано, что ввод информации по параллельному интерфейсу, с помощью технических средств по преобразованию и распараллеливанию процедур опроса и ввода данных позволяет учеть требования теоремы Котельникова и снизить шум дискретизации.

2) Проведен натурный эксперимент, подтверждающий верность теоретических положений о необходимости преобразования интерфейсов, с целью сокращения времени на собственно вввод информации в ЭВМ.

2) Разработана модель функционирования контура цифрового управления с буферизацией и показано, что использование FIFO буфера в тракте ввода информации в Фон-Неймановскую ЭВМ позволяет снизить потери информации. 3) Предложен метод оценки емкости FIFO буфера, на основе положений теории масового обсуживания.

4) Проведён компьютерный эксперимент, иллюстрирующий верность предположения, что вероятность сбоя, в тракте ввода данных с буфером экспоненцильно снижается с ростом емкости буфера.

ЗАКЛЮЧЕНИЕ

1) Проведён системный анализ существующих многоконтурных объектов;

2) На основании проведённого системного анализа, показано, что существующие МО имеют цифровые системы управления, а их структура, независимо от специфики решаемых ими задач, имеет общие характерные особенности, такие как замыкающиеся через цифровой контроллер контуры управления;

3) Показано, что функционирование цифровой системы управления сопровождается временными задержками, стохастического характера.

4) Рассмотрены основные методы управления и показано, что для описания функционирования цифровой системы управления может быть использована теория полумарковских процессов.

5) Разработана математическая модель линейного гидропривода двустороннего действия, из которой получены зависимости для расчета статических режимов и система уравнений, описывающих динамику процессов в приводе.

6) Разработаны математические модели привода с вращением выходного вала, а также гидронасоса, приводимого в движение силовым агрегатом, из них получены зависимости для расчета статических режимов и системы уравнений, описывающих динамику процессов в приводе.

7) Для всех разработанных моделей получены системы линейных уравнений в операторной форме.

8) На основании аналитических математических моделей разработаны структурные схемы линейного гидропривода, гидропривода с объемным управлением и гидронасоса; для всех разработанных структурных схем получены зависимости, связывающие параметры структуры с параметрами линеаризованных уравнений.

9) Построена структурная схема силовой гидравлической системы одноковшового экскаватора.

10) Показано, что силовая гидравлическая система одноковшового экскаватора является МО.

115

11) Получено обоснование применения цифровой системы управления, построенной по иерархическому принципу, для управления силовой гидравлической системой одноковшового экскаватора.

12) Предложен общий метод расчета вероятностных и временных характеристик блуждания по полумарковскому процессу, основанный на том, что полумарковскую матрицу преобразуют в характеристическую, которую возводят в степень, затем степени характеристической матрицы суммируют.

13) С использованием общего метода решены задачи определения вероятностных и временных характеристик блуждания по полумарковскому процессу от одного состояния до другого, а также возврата в одно из состояний.

14) Разработан метод прямого расчета временных и вероятностных характеристик комплексного блуждания между состояниями и возврата в состояние с использованием только операций с числовыми матицами: стохастической, математических ожиданий и дисперсий, характеризующих элементы исходной полумарковской матрицы.

15) Предложен метод последовательного упрощения полумарковского процесса с понижением размерности матрицы и рекурсивным пересчетом значений элементов стахостической матрицы, матрицы математических ожиданий и матрицы дисперсий.

16) Разработана математическая модель обработки данных Фон-Неймановской ЭВМ и показано, что ввод информации по параллельному интерфейсу, с помощью технических средств по преобразованию и распараллеливанию процедур опроса и ввода данных позволяет учеть требования теоремы Котельникова и снизить шум дискретизации.

17) Проведен натурный эксперимент, подтверждающий верность теоретических положений о необходимости преобразования интерфейсов, с целью сокращения времени на собственно вввод информации в ЭВМ.

18) Разработана модель функционирования контура цифрового управления с буферизацией и показано, что использование FIFO буфера в тракте ввода

116

информации в Фон-Неймановскую ЭВМ позволяет снизить потери информации.

19) Предложен метод оценки емкости FIFO буфера, на основе положений теории масового обсуживания.

20) Проведён компьютерный эксперимент, иллюстрирующий верность предположения, что вероятность сбоя, в тракте ввода данных с буфером экспоненцильно снижается с ростом емкости буфера.

СПИСОК ЛИТЕРАТУРЫ

1. Емельянова Т.А., Гончаров В.И. Синтез многоконтурных систем автоматического управления с применением регуляризации // Сборник докладов V Всероссийской научно-практической конференции студентов, аспирантов и молодых учёных (ТИМ'2016) с международным участием. – Екатеринбург: УрФУ, 2016 - 304 с.

2. Медведев М.Ю. Аналитический синтез управлений нелинейными многосвязными объектами в условиях неопределенности. Таганрог: Изд-во ТТИ ЮФУ. 2010.402 с.

 Перепелкин Е.А. Алгоритм параметрической идентификации многосвязных непрерывных систем// Известия РАН. Техническая кибернетика. 1994.
 - N6. - С. 79-82.

4. Асанов А.З. Определение минимального объема отсчетов при калибровке каналов цифровых систем контроля // Датчики систем измерения, контроля и управления, межвуз. сб. научных трудов. -Пенза: Пенз. политехи, ин-т, 1989, № 9. С.58-60

5. Асанов А.З. Применение технологии вложения систем при проектировании адаптивных систем // Труды II междунар. конференции «Идентификация систем и задачи управления». -М.: изд-во ИПУ РАН, CD ISBN 5-201-14948-02003. C.1085-1098

6. Буков В.Н., Круглов С.П., Решетняк Е.П. Адаптируемость линейной динамической системы с идентификатором и эталонной моделью. // АиТ, №3, 1994.

7. Асанов А.З. Синтез системы управления многомерными объектами по технологии вложения // Труды XXXII Уральского семинара «Механика и процессы управления». -Екатеринбург: Уральское отделение РАН, 2002, с.637-646.

8. Артемьев К.С. Система "умный дом" с интеллектуальным адаптивным входом/выходом // Патент на полезную модель RU 130098 U1, 10.07.2013. Заяв-ка № 2012138812/08, 10.09.2012

9. Tesla motors, inc. Response to detection of an overdischarge event in a series connected battery element // Патент на изобретение АН 02J700 FI, 05.06.2014. Заявка № 20140152260.

10. Скрынник Б. С. Исполнительное устройство для автоматического управления машинотракторным агрегатом // Патент на изобретение RU 130572 U1 27.07.2013. Заявка № 2013103885/11, 29.01.2013.

11. МРК «Варан» [Электронный ресурс] // Новости ВПР. - Режим доступа: http://niism.bmstu.zu/otdelyi-nii-sm/sm4-6/mrk-"varan"».

12. Одноковшовый экскаватор «Catterpilar» [Электронный ресурс] // vosttech.ru. Режим доступа:

https://www.vosttech.ru/produkciya/katalog_produkcii/ekskavator_caterpillar/

13. Дистанционно управляемые средства для гуманитарного разминирования [Электронный ресурс] // http://www.bnti.ru/. – Режим доступа: http://www.bnti.ru/showart.asp?aid=457&lvl=02.01.02.02.&p=1.

14. Ларкин Е.В. Основные свойства вычислительных алгоритмов, выполняемых на реальных ЭВМ / Клинцов Г.Н., Ларкин Е.В.// Известия ТулГУ. Сер. Технические науки. Вып. 1 – Тула: Изд-во ТулГУ, 2016. - С. 61-68.

15. Ларкин Е.В. Моделирование процесса дистанционного управления роботом // Известия ТулГУ. Сер. Технические науки. Вып. 12-4, – Тула: Изд-во ТулГУ, 2016. - С. 202-213.

16. Ларкин Е.В. Петри-Марковская модель прерываний// Известия ТулГУ. Сер. Технические науки. Вып. 2, – Тула: Изд-во ТулГУ, 2017. - С. 3-17.

17. Ларкин Е.В. Промышленный робот с информационной системой управления/ Акименко Т.А., Аршакян А.А., Будков С.А., Ларкин Е.В. // Известия ТулГУ. Сер. Технические науки. Вып. 4– Тула: Изд-во ТулГУ, 2013. - С. 133-138.

18. Ларкин Е.В. Система подвижности тренажера, имитирующая движение транспортного средства / Ларкин Е.В., Осетров А.О., Осетров С.О. // Известия ТулГУ. Сер. Технические науки. Вып. 12-2– Тула: Изд-во ТулГУ, 2012. -С. 267-272. 19. Ларкин Е.В. Математическая модель мехатронной системы тренажера с тремя степенями свободы / Ларкин Е.В., Соколов В.А. // Известия ТулГУ. Сер. Технические науки. Вып. 5-1– Тула: Изд-во ТулГУ, 2011. - С. 213-217.

20. Антонов М.А. Особенности работы программного обеспечения мобильных роботов // Известия ТулГУ. Сер. Технические науки. Вып. 2 – Тула: Изд-во ТулГУ, 2018. - С. 50-56.

21. Ларкин Е.В. Особенности функционирования компьютерных систем управления железнодорожным транспортом с точки зрения обеспечения надежности / Ивутин А.Н., Ларкин Е.В. // Известия ТулГУ. Сер. Технические науки. Вып. 1– Тула: Изд-во ТулГУ, 2014. - С. 22-27.

22. Ларкин Е.В. Обобщенная полумарковская модель алгоритма управления цифровыми устройствами / Ивутин А.Н., Ларкин Е.В. // Известия ТулГУ. Сер. Технические науки. Вып. 1– Тула: Изд-во ТулГУ, 2013. - С. 222-227.

23. Ларкин Е.В. Прогнозирование времени выполнения алгоритма / Ивутин А.Н., Ларкин Е.В. // Известия ТулГУ. Сер. Технические науки. Вып. 3– Тула: Изд-во ТулГУ, 2013. - С. 301-315.

24. Королюк В.С., Турбин А.Ф. Полумарковские процессы и их применения. Киев: Наукова думка, 1976.

25. Привалов А.Н., Ларкин Е.В. Моделирование информационных процессов тренажерных систем: Концепция, методология, модели. Saarbrucken Deutchland: LAP LAMBERT Academic Publishing GmbH & Co., 2012.

26. Ярлыков М.С., Миронов М.А. Марковская теория оценивания случайных процессов. М.: Радио и связь, 1993.

27. Gotz N. et al. Multiprocessor and Distributed System Design : The Integration of Functional Specification and Performance Analysis Using Stochastic Process Algebras // Lecture Notes in Computer Science. 1993. Vol. 729. P. 121–146.

28. Wittenmark B., Nilsson J., Torngren M. Timing problems in realtime control systems // Proceedings of 1995 American Control Conference - ACC'95. American Autom Control Council, 1995. P. 2000–2004. 29. Ярлыков М.С., Миронов М.А. Марковская теория оценивания случайных процессов. - М.: Радио и связь, 1993. - 460 с.

30. Анисимов В.В. Случайные процессы с дискретной компонентой. - Киев Вища школа, 1988. - 184 с.

31. Игнатущенко В.В., Клушин Ю.С. Прогнозирование выполнения сложных программных комплексов на параллельных компьютерах: Прямое сттохастическое моделирование // Автоматика и телемеханика. - 1994. - N 11. - С. 142 - 157.

32. Каляев И.А., Гайдук А.Р., Капустян С.Г. Модели и алгоритмы коллективного управления в группах роботов, – М.: ФИЗМАТЛИТ, 2009. – 280 с.

33. Larkin E.V., Privalov A.N. Simulation of computer systems with FIFOdiscipline interrupt handling. Chebyshevskii Sbornik. 2019;20(2):499-511. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-2-499-511

34. Ежов И.И. Эргодическая теорема для вероятностных процессов с полумарковским вмешательством случая // Украинский математический жур-нал.
- 1968. № 3 - С. 384 - 388.

35. Иванов Н.Н. Математическое прогнозирование надежного выполнения наборов задач с симметричными распределениями времени выполнения // Открытое образование. - 2011. - № 2-2, С. 52 – 55.

36. Ларкин Е.В. Определение соотношения сигнал - шум в системах наблюдения / Аршакян А.А., Ларкин Е.В.// Известия ТулГУ. Сер. Технические науки. Вып. 3– Тула: Изд-во ТулГУ, 2012. - С. 168-174.

37. Антонов М.А. Ввод навигационной информации в систему управления мобильным роботом / Ларкин Е.В., Антонов М.А., Королев М.И. // Телекоммуникации. Вып.1 – Изд-во Наука и Технологии, 2020. - С. 10-17.

38. Антонов М.А. Преобразователь последовательного интерфейса в параллельный / Ларкин Е.В., Антонов М.А., Басс А.В. // Известия ТулГУ. Сер. Технические науки. Вып. 9 – Тула: Изд-во ТулГУ, 2018. - С. 43-49.

39. Математические модели, динамические характеристики и анализ систем автоматического управления. Т. 1. Методы классической и современной теории автоматического управления / Ред. К.А. Пупков и Н.Д. Егупов. - М.: Изд-во МГТУ им. Н.Э.Баумана, 2004. - 656 с.

40. Аршакян А.А. Ошибки при вводе данных в ЭВМ // Известия ТулГУ. Сер. Технические науки. - Вып. 11. Ч. 1 - 2014. - С. 426 - 435.

41. Антонов М.А. К вопросу повышения точности промышленных манипуляторов/ Ларкин Е.В., Антонов М.А.// Известия ТулГУ. Сер. Технические науки.Вып. 2 – Тула: Изд-во ТулГУ, 2021. - С. 3-12.

42. Antonov M.A. Modeling of increased rigidity of industrial manipulator / Larkin E., Bogomolov A., Antonov M.// Lecture Notes in Computer Science. 2020. T. 12336 LNAI. C. 170-178.

43. Antonov M.A.The tricycle mobile robot movement simulation / Larkin E.V., Antonov M.A., Privalov A.N. // Всборнике: MATEC Web of Conferences. 2018. C. 06001.

44. Антонов М.А. Буферизация данных в системах управления роботами / Ларкин Е.В., Богомолов А.В., Антонов М.А.// Известия ТулГУ. Сер. Технические науки. Вып. 9-1 – Тула: Изд-во ТулГУ, 2017. - С. 117-127.

45. Ричард Лайонс Цифровая обработка сигналов: Второе издание. Пер. с англ. - М.: ООО "Бином-Пресс", 2006 г. - 656 с.: ил.

46. Поляков К.Ю. Основы теории цифровых систем управления: учеб. пособие. — СПб.: Изд-во СПбГМТУ, 2012. — 154 с. ISBN 978-5-88303-504-2.

47. Борисова И. В. Цифровые методы обработки информации : учеб. пособие / И. В. Борисова. - Новосибирск : Изд-во НГТУ, 2014. - 139 с. - ISBN 978-5-7782-2448-3.

48. Веселерский В. А. Цифровые автоматические системы. М.: Наука, 1976.

49. Антонов М.А. Модель циклограммы управления мобильным роботом как полумарковский процесс / Ларкин Е.В., Гришин К.А., Антонов М.А.// Известия ТулГУ. Сер. Технические науки. Вып. 2 – Тула: Изд-во ТулГУ, 2018. - С. 188-195.

50. Антонов М.А. Модель мобильного робота как ординарный полумарковский процесс / Антонов М.А., Гришин К.А.// Известия ТулГУ. Сер. Технические науки. Вып. 2. – Тула: Изд-во ТулГУ, 2018. - С. 95-100.

51. Антонов М.А. Модели диспетчеризации / Ларкин Е.В., Антонов М.А. // Известия ТулГУ. Сер. Технические науки. Вып. 2 – Тула: Изд-во ТулГУ, 2019. - С. 124-133.

52. Antonov M.A.Data buffering in mobile robot control systems/ Larkin E.V., Kotov V.V., Kotova N.A., Antonov M.A. // В сборнике: Proceedings - 2018 4th International Conference on Control, Automation and Robotics, ICCAR 2018. 4. 2018. C. 50-54.

53. Antonov M.A. Semi-markov model of a swarm functioning / Larkin E.V., Antonov M.A.// Lecture Notes in Computer Science. 2018. T. 10941 LNCS. C. 3-13.

54. Нагорный В. С, Денисов А.А. Устройства автоматики гидро- и пневмосистем. Учеб. пособие техн. вузов. — М.: Высш. шк., 1991. — 367 с: ил.

55. Гамынин Н.С. Гидравлический привод систем управления. М.: Машиностроение, 1972. - 376 с.

56. Объемные гидравлические приводы [Текст] / Т. М. Башта, И. З. Зайченко, В. В. Ермаков и Е. М. Хаймович ; Под ред. д-ра техн. наук проф. Т. М. Башты. - Москва : Машиностроение, 1969. - 628 с. : ил.; 27 см.

57. Чижиумов, С. Д. Основы гидродинамики : учеб. пособие / С. Д. Чижиумов. – Комсомольск-на-Амуре : ГОУВПО «КнАГТУ», 2007. – 106 с. ISBN 978-5-7765-0516-4.

58. В.Г. Зезин. Динамика и регулирование гидропневмосистем: учеб. пособие. – Челябинск Издательство «ЮУрГУ», 2011. – 146 с.

59. Брон Л.С., Тартаковский Ж.Э. Гидравлический привод агрегатных станков и автоматических линий. -М.: Машиностроение, 1962.

60. Башта Т.М., Зайченко И.З., Ермаков В.Е., Хаймович Е.М. Объёмные гидравлические приводы. -М.: Машиностроение, 1960.

61. Блекборн и др. Гидравлические и пневматические силовые системы управления. -М.: ИЛ, 1962.

62. Алексеева Т.В. Гидропривод и гидроавтоматика землеройно - транспортных машин. -М.: Машиностроение, 1966.

63. Иванов И.М. Исследование работы аксиально поршневых гидромоторов на малых скоростях вращения в приводе грузоподъемных устройств. -Дис. канд. тех. наук. -М., 1972.

64. Теория систем автоматвческого регулирования. Бесекерский В. А., Попов Е. П., издательство «Наука», Главная редакция физико-математической литературы, М., 1972, 768 стр.

65. Кутузов В. К. Нелинейные структурные схемы системы объёмных гидроприводов механическая передача - нагрузка // Машиноведение. -М.: Наука, 1971.-№ 3.

66. Гойдо М.Е. Проектирование объемных гидроприводов. Библиотека конструктора. / М.Е. Гойдо - М.Машиностроение, 2009. - 305с.

67. Ilango, Soundara. Intro, to Hydraulics and Pneumatics. PHI Learning Pvt. Ltd., 2007. - 308c.

68. Сидоренко В.С. Динамика разветвленного гидропривода рабочих движений станочных систем / В.С. Сидоренко, Ле Чунг Киен - М.: Фундаментальные исследования. - 2013. - №.10. (часть 3). - С.509-515.

69. Сосонкин В.Л. Дискретная гидроавтоматика / В.Л. Сосонкин. - М.: Машиностроение, 1972. - 160 с.

70. Лещенко В.А. Гидравлические следящие приводы станков с программным управлением / В.А. Лещенко. - М.: Машиностроение, 1975. - 288 с.

71. Коробочкин Б.Л. Динамика гидравлических систем станков / Б.Л. Коробочкин. - М.: Машиностроение, 1976. - 240 с.

72. Иванов Г.М. Проектирование гидравлических систем машин / Г.М. Иванов, С.А. Ермаков, Б.Л. Коробочкин, Р.М. Пасынков. - М.: Машиностроение, 1992. - 224 с.

73. Лозовский В.Н. Надежность гидравлических агрегатов / В.Н. Лозовский. М.: Машиностроение, 1974. - 320 с.

74. Докукин А.В. Динамические процессы горных машин / А.В. Докукин и др.. М. : Наука, 1972. - 150 с.

75. Востриков, А. С. Теория автоматического регулирования : учебник и практикум для вузов / А. С. Востриков, Г. А. Французова. — Москва : Издательство Юрайт, 2020. — 279 с.

76. Ефанов А.В. Теория автоматического управления : учебник для вузов / А.В. Ефанов, В.А. Ярош. – Санкт-Петербург : Лань, 2022. – 160 с. : ил. – Текст : непосредственный.

77. Ким С. А. Теория управления: Учебник для бакалавров / С. А. Ким. — М.: Издательско-торговая корпорация «Дашков и К°», 2019. — 240 с.

78. Antonov M.A. Embedded parallel operation programmer modeling / Larkin E.V., Antonov M.A., Troshina A.G., Privalov A.N.// Всборнике: 2018 7th Mediterranean Conference on Embedded Computing, MECO 2018 - Including ECYPS 2018, Proceedings. 7. 2018. C. 1-5.

79. Антонов М.А. О движении роя к рубежу / Ларкин Е.В., Антонов М.А., Афанасьев Д.Р.// Известия ТулГУ. Сер. Технические науки. Вып. 9 – Тула: Издво ТулГУ, 2020. - С. 3-13.

80. Antonov M.A. On assessing the temporal characteristics of reaching the milestone by a swarm/ Larkin E., Antonov M.// Lecture Notes in Computer Science. 2020. T. 12145 LNCS. C. 46-55.

81. Antonov M.A. About one approach to robot control system simulation / Larkin E., Bogomolov A., Antonov M., Privalov A.// Lecture Notes in Computer Science. 2018. T. 11097 LNAI. C. 159-169.

82. Королюк В.С., Томусяк А.А. Описание функционирования резервированных систем посредством полумарковских процессов // Кибернетика. - 1965.
- № 5. 0 С. 55 -59.

83. Nair S.S. Semi-Markov analysis of two queues in series attended by a single server // Bull. Soc. math. Belg,. - 1970. - № 4. Pp. 355 - 367.

84. Neuts M.F. Semi-Markov analysis of a bulk queue // Bull. Soc. math. Belg.
- 1966, - № 1, Pp. 28 - 42.

85. Бояринов Ю.Г., Глушко С.И. Полумарковские модели систем с нечеткими параметрами // Программные продукты и системы. - 2012. - № 2. С. 146 – 149.

86. Броди С.М. Исследование систем массового обслуживания с помощью полумарковских процессов // Кибернетика. - 1965. - № 6. - С. 55—58.

87. Бояринов Ю.Г., Борисов В.В. Анализ систем и процессов на основе нечетких полумарковских моделей // Информационные технологии. - 2011. - № 11. С. 31 – 36.

88. Barlow R.E. Applications of semi-Markov processes to counter problems // Stud. appl. prob. and manag. sci. - Stanford, Calif., Univ. Press, 1962/ Pp/ 34 - 62.

89. Semi-Markov Modelling of Command Execution by Mobile robots // E.V.Larkin, A.N.Ivutin, V.V.Kotov, A.N.Privalov Interactive Collaborative Robotics (ICR 2016) Budapest, Hungary, August 24 - 26. Proceedings. Lecture Notes in Artifical Intelligence. Subseries of Lecture notes in Computer Science. - Springer, 2016. -Pp. 189 - 198. DOI 10.1007/978-3-319-43955-6/

90. McLean R.A., Neuts M.F,,The integral of a function defined on a semi-Markov process // SIAM J. Appl. Math. - 1967. - № 3. Pp. 726 - 737.

91. Antonov M.A. On optimization of data entry procedure into onboard computer of mobile robot / Larkin E., Antonov M., Privalov A. // В сборнике: Proceedings - 2019 International Russian Automation Conference, RusAutoCon 2019. 2019. C. 8867788.

92. Barbu V.S., Karagrigoriou A., Makrides A. On Semi-Markov Modelling and Inference for Multi-state Systems // Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO), 2016 Second International Symposium, 15-18 Feb. 2016, DOI: 10.1109/SMRLO.2016.20.

93. Ковалева Л.М. О времени пребывания двух независимых полумарковских процессов в заданном состоянии // Украинский математический журнал. -1968, - № 6. -.С. 837 - 841.

94. Sertozo R.F. Random time transformations of semi-Markov processes // Ann. Math. Stat. - 1971. - № 1. - Pp. 176 - 188.

95. Баклан В. В., Эргодическая теорема для марковских процессов с дискретным вмешательством случая // Украинский математический журнал, - 1967. - № 5. -С. 123 - 12.

96. Валах В.Я. Королюк В.С, Стохастические автоматы со случайным временем реакции и их функционирование в случайных средах // Автоматы, гибридные и управляющие машины // М.: Наука, 1972, С. 38 - 45.

97. Губенко Л.Г., Штатланд Э.С, Об управляемых полумарковских процессах // Кибернетика. - 1972. - № 2. - С. 26 - 29.

98. Клёнов С. Г. Полумарковские модели, алгоритмы и комплекс программ оптимизации технического обслуживания сложных технологических систем с учётом старения оборудования : Дис. ... канд. техн. наук: 05.13.18 : М.: 2003. - 153 с. РГБ ОД, 61:04-5/1074.

99. Кокс Л.Р., Смит У.Л. Теория очередей. - М.: Мир, 1966. - 218 с.

100. Королюк В.С. Об асимптотическом поведении времени пребывания полумарковского процесса в подмножестве состояний // Украинский математический журнал. - 1969. - № 6. С. 842 - 846.

101. Королюк В.С.,, Турбин А.Ф. Об одном методе доказательства предельных теорем для некоторых функционалов от полумарковских процес-сов // Украинский математический журнал. - 1972, - № 2. - С. 234 - 340.

102. Котов В.В., Котова Н.А., Ларкин Е.В. Метод имитационного моделирования систем с использованием сетей Петри-Маркова // Известия ТулГУ. Сер. Технические науки. - Вып. 9. - 2015. - С. 164 - 170.

103. Кузнецов С.В. Математические модели процессов и систем технической эксплуатации авионики как марковские и полумарковские процессы // Научный вестник Московского государственного технического университета гражданской авиации. - 2015. - № 213 (3), - С. 28 – 33.

104. Куконин А.Г., Ларкин Е.В. Исследование временных характеристик алгоритмов интерактивного взаимодействия пользователя с ЭВМ // Автоматизация технологической подготовки производства. Минск: ИТК АН БССР, 1986. - С. 89 - 96.

105. Ларкин Е.В. Моделирование параллельных полумарковских процессов. Известия ТулГУ. Серия Технические науки. Вып. 2. Тула: Изд-во ТулГУ, 2018.- с.3-11

106. Ларкин Е.В., Ивутин А.Н. Определение временных интервалов в алгоритмах управления // Известия Томского политехнического университета. -№ 5. - Т. 324. - 2014. - С. 6 - 12.

107. Ларкин Е.В., Сычугов А.А. К вопросу о соревновании случайных процессов // Известия ТулГУ. Технические науки. - 2013. - Вып. 3. - Тула: Издво ТулГУ. - С. 275 - 282.

108. Ларкин Е.В., Сычугов А.А. Соревновательные игры // Известия Тул-ГУ. Технические науки. - 2013. - Вып. 7. Ч. 2. - Тула: Изд-во ТулГУ. - С. 108 -116.

109. Метод построения нечеткой полумарковской модели функционирования сложной системы // Борисов В.В., Бояринов Ю.Г., Дли М.И., Мищенко В.И. Программные продукты и системы. - 2010 - № 3, С. 26 – 31.

110. Параллельные полумарковские процессы в задачах групповогоуправления объектами. Привалов А.Н., Ларкин Е.В. В сборнике: Алгебра, теория чисел и дискретная геометрия: современные проблемы и приложения Материалы XV Международной конференции, посвященной столетию со дня рождения профессора Николая Михайловича Коробова. 2018. С. 54-56.

111. Антонов М.А. Концепция построения реконфигурируемых отказоустойчивых цифровых систем // Известия ТулГУ. Сер. Технические науки. Вып. 9-1 – Тула: Изд-во ТулГУ, 2017. - С. 38-42.

112. Антонов М.А. О ещё одном методе описания многоконтурных объектов / Ларкин Е.В., Антонов М.А., Королев М.И.//Известия ТулГУ. Сер. Технические науки. Вып. 9 – Тула: Изд-во ТулГУ, 2020. - С. 50-56.

113. Сапаговас И. О сходимости сумм марковских процессов восстанов¬ления к процессу Пуассона // Liet. mat. rinkinys, Литовский математический сборник. - 1966. - № 2. - С. 271 - 277. 114. Арсенишвили Г.Л., Ежов И.И. О распределении времени пребывания в заданной области полумарковским процессом г-го порядка. // Труды Института прикладной математики Тбилисского университета. - 1969. - № 2, - С. 151,-157

115. Арсенишвили Г.Л., Ежов И.И. Об одной предельной теореме для полумарковских процессов г-го порядка // Сообщ. АН ГрузССР. - 1969. - № 1. - С. 25-28.

116. Артамонов Г. Т., Тюрин В. Д. Анализ информационно-управляющих систем со случайным интервалом квантования сигнала во времени. М.: Энергия, 1977.

117. Артемьев В. М., Ивановский А. В. Вероятностный анализ импульсных систем при случайном законе распределения интервалов квантования // Автоматика и вычислительная техника. Минск: Высшая школа, 1981. Вып. 10. С. 2-12.

118. Герцбах И.Б. Оптимальное управление полумарковским процессом при наличии ограничений на вероятности состояний // Кибернетика. - 1970. - № 5. - С. 56 - 61.

119. Добрыдень В.А., Оптимальное наблюдение полумарковского процесса // Изв. АН СССР. Техн. кибернетика. - 1971. - № 4. - С. 47 - 49.

120. Игнатьев В.М., Ларкин Е.В. Анализ производительности ЭВМ: Учебное пособие. - Тула: ТГТУ, 1994. - 104 с.

121. Игнатьев В.М., Ларкин Е.В. Временные характеристики алгоритмов в системах с прерываниями // Проектирование ЭВМ. Рязань, РГРТА, 1994, - С. 29-40.

122. Игнатьев В.М., Ларкин Е.В. Сети Петри-Маркова. - Тула: ТулГУ, 1997. - 163 с.

123. Antonov M. A. Serial interface converter of micromechanical sensors to a parallel interface / Larkin E.V., Antonov M.A. // Lecture Notes in Computer Science. 2019. T. 11656 LNCS. C. 378-386.

124. Serial Peripheral Interface [Электронный ресурс] // ru.wikipedia.org. -Режим доступа: https://ru.wikipedia.org/wiki/Serial_Peripheral_Interface

125. Антонов М.А. Устройство преобразования интерфейсов / Антонов М.А., Басс А.В., Ларкин Е.В. // Патент на полезную модель RU 188931 U1, 29.04.2019. Заявка № 2018139156 от 06.11.2018.

126. Антонов М.А. Преобразование последовательного интерфейса в параллельный интерфейс в системах технического зрения / Ларкин Е.В., Антонов М.А./ В сборнике: Оптико-электронные приборы и устройства в системах распознавания образов и обработки изображений. Материалы XVI Международной научно-технической конференции. Редколлегия: С.Г. Емельянов, В.С. Титов (отв. ред.) [идр.]. Курск, 2021. С. 155-157.

127. Антонов М.А. Работа с плис с использованием языка описания аппаратуры verilog / Басс А.В., Антонов М.А. // Известия ТулГУ. Сер. Технические науки. Вып. 3 – Тула: Изд-во ТулГУ, 2019. - С. 19-24.

128. Антонов М.А. О приближении потока событий к пуассоновскому в цифровых системах управления роботами / Ларкин Е.В., Богомолов А.В., Горбачев Д.В., Антонов М.А.// Известия ТулГУ. Сер. Технические науки. Вып. 9-1 – Тула: Изд-во ТулГУ, 2017. - С. 3-13.

129. Grigelionis B. On the convergence of sums of random step processes to a Poisson process. Theory Probab. Appl. 1963. Pp. 177 - 182.

130. Антонов М.А. Устройство буферизации потока данных / Антонов
М.А., Гришин К.А., Ларкин Е.В. // Патент на полезную модель RU 185002 U1,
16.11.2018. Заявка № 2018122329 от 18.06.2018.

ПРИЛОЖЕНИЕ А.

АКТ ВНЕДРЕНИЯ НАУЧНЫХ РЕЗУЛЬТАТОВ В ПРОИЗВОДСТВО МНОГОЗВЕННОГО КАЧАЮЩЕГОСЯ УСТРОЙСТВА

АКТ

о внедрении результатов диссертационной работы Антонова Максима Александровича

Комиссия в составе председателя комиссии:

директора Петрухина И.Н.,

членов комиссии:

начальника КТБ Горшкова А.А., ведущего инженера Лыкова А.Д.

составила настоящий акт о том, что результаты диссертационной работы М.А. Антонова, а именно:

- метод анализа и оценки быстродействия программного обеспечения, заложенного в цифровой контроллер управления многозвенного качающегося устройства;

внедрена в процесс проектирования многозвенного качающегося устройства.

Настоящий акт не может служить основанием для финансовых расчётов между организациями.

Председатель комиссии:

И.Н. Петрухин

Члены комиссии:

А.А. Горшков

А.Д. Лыков

ПРИЛОЖЕНИЕ Б.

АКТ ВНЕДРЕНИЯ НАУЧНЫХ РЕЗУЛЬТАТОВ В УЧЕБНЫЙ ПРОЦЕСС

132

«УТВЕРЖДАЮ» Проректор по учебной работе докт. тех. наук, доцент Котов Владислав Викторович 09 2022 г.

AKT

внедрения научных результатов диссертации на соискание ученой степени кандидата технических наук в учебный процесс

Комиссия Тульского государственного университета, в составе:

Ларкин Е.В. – председатель комиссии, заведующий кафедрой РТиАП, д.т.н., профессор;

Акименко Т.А. – член комиссии, к.т.н., доцент;

Кузнецова Т.Р. – член комиссии, к.т.н., доцент;

Рассмотрела материалы диссертации Антонова Максима Александровича на соискание ученой степени кандидата технических наук по специальности.

Комиссия констатирует, что в учебный процесс ФГБОУ ВО «Тульский государственный университет» внедрены следующие научные результаты кандидатской диссертации Антонова Максима Александровича:

в дисциплину «Теория управления», направления 15.03.06 «Мехатроника и робототехника» модель управления сложными многоконтурными объектами, учитывающая реальные свойства цифрового контроллера как физического прибора;

в дисциплину «Цифровое управление технологическими машинами и оборудованием» направления 15.03.02 «Технологические машины и оборудование», метод оценки задержек по времени, вносимых контроллером, при интерпретации управляющего алгоритма;

в дисциплину «Приводы роботов и робототехнических систем» направления 15.03.06 «Мехатроника и робототехника» математическая модель, описывающая динамику гидропривода.

Председатель комиссии

Е.В. Ларкин

Члены комиссии

Cheery In Hol

Т.А. Акименко

Т.Р. Кузнецова